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Introduction 

Organizational Structure of the Report 

A challenge in organizing this report was to provide sufficient detail to readers that desire 
it, while also providing a relatively high-level summary of the entire project. Published 
materials that resulted from this project currently include eleven conference/journal 
papers, two PhD dissertations, and five MS theses. The eleven published papers are 
included in printed form in the appendices of this report. It was natural to include copies 
of the papers in printed form and refer readers interested in further details to the 
dissertations and theses (which are available online) because the papers were generally 
derived from the dissertations and theses.  It was infeasible to incorporate the 
dissertations and theses in printed form; there are over 800 pages associated with these 
documents. The report is organized hierarchically, as illustrated in Figure 1. 
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Figure 1. Organizational structure of the report. 
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The main body of the report provides a summary of basic results, and includes four 
major parts: (1) Optimal Multiprocessor Configuration for SAR; (2) Optimal 
Communication Scheduling for STAP; (3) FPGA Power Prediction and Applications; 
and (4) Hybrid FPGA/DSP/GPP Platform. Each of these parts is supported by a 
collection of published papers, theses, and dissertations produced during the project 
period. Copies of the published papers are included in the appendices of the report. 
References to these publications are labeled with a number followed by the letter of the 
appendix where a copy of the publication can be found. For example, reference label 
[1A] indicates that a copy of the referenced publication can be found in Appendix A. Due 
to size considerations, copies of theses and dissertations, such as reference [3], are not 
included in an appendix; however, online links for all references are provided in the list 
of references. For conference papers, links to the associated presentation materials are 
also provided within the list of references. As illustrated in Figure 1, additional materials 
are also available online, including annual project summaries, technical reports, and 
presentations and posters given at conferences and PI (principal investigator) meetings. 
Online links to additional materials are provided in the section entitled Additional 
Materials, which follows the References section. 

Each major part is divided into subsections, and each subsection provides an overview 
of one or more published papers.  Overviews of some of the conference papers (e.g., 
[15I] and [18K]) actually expand upon the publication by including content from the 
presentation materials associated with that publication. Readers not needing the level of 
detail found in these overviews are encouraged to first read the Acknowledgments 
section, which includes a paragraph on the work conducted by each student assistant.  Of 
course readers requiring more detail are encouraged to pursue copies of the papers found 
in the appendices, online links of presentation materials found in the References section, 
and/or the online links found in the Additional Materials section.  
 
Project Overview 

The advantages of using digital signal processing (DSP) chips for high-performance 
embedded signal processing applications have been demonstrated during the past decade. 
DSP chips often win over general purpose processors (GPPs) because their complexity 
(measured, for example, in terms of silicon area, number of transistors, or power 
consumption) is better matched to the highly regular and numerical-intensive 
computations required by many signal processing based embedded applications. 
However, it is now apparent that even DSP chips can be overkill for some computations 
found in common embedded military applications. That is, in some cases DSP chips are 
equipped with much more architectural complexity than is actually needed, resulting in 
inefficiencies and greater power consumption than absolutely necessary. 

In this project, we investigated the advantages of integrating configurable hardware 
together with a multiprocessor DSP/GPP platform. The computational engine of the 
configurable hardware used in this project was comprised of FPGA chips. A primary goal 
of our project was to demonstrate that for given computational loads – associated with 
instances of embedded radar signal processing applications – the total size, weight, and 



 

 

 

3

power (SWAP) could be reduced by integrating FPGA-based components as part of the 
embedded computational platform.  

Reconfigurable computing devices, such as FPGAs, can offer a cost-effective and 
more flexible alternative than the use of application specific integrated circuits (ASICs). 
FPGAs are especially cost-effective compared to ASICs when only a small number of the 
chip(s) are required. Another major advantage of FPGAs over ASICs is that they can be 
reconfigured to change their functionality while still resident in the system, which allows 
hardware designs to be changed similar to software, and dynamically reconfigured to 
perform different functions at different times. 

A number of theoretical and empirical studies were conducted during the project 
period to understand and demonstrate the advantages and disadvantages of DSP/GPP 
versus FPGA technologies with respect to SWAP. A prototype heterogeneous 
FPGA/DSP/GPP-based platform was constructed using commercial off-the-shelf (COTS) 
components to demonstrate the utility of a hybrid system containing all three types of 
technologies. A number of systematic approaches and tools based on mathematical 
programming and modeling were developed to optimally configure FPGA/DSP/GPP-
based platforms for applications in the radar signal-processing domain. The two major 
applications considered were SAR (synthetic aperture radar) and STAP (space-time 
adaptive processing).  

The prototype system was constructed using COTS components from two vendors: 
Annapolis Micro Systems, Inc. and Mercury Computer Systems, Inc. We had excellent 
support from both companies, and we designed and implemented a custom interface to 
allow communication between two disparate product lines of these vendors. 
Implementation of a custom interface was necessary because at that time (1997-98) there 
were few interfacing standards among vendors such as the two we were working with 
and little customer demand (excluding us, of course!) for providing such an interface. 
The availability of products and support to more easily interface components from 
different vendors, including the two we worked with, is much better today. In fact, the 
output of our research, which illustrated the potential benefits of a hybrid 
FPGA/DSP/GPP platform, served as a catalyst for these industry sectors to invest 
significant resources and provide support and standards appropriate for interfacing their 
product lines.  
 
Brief Descriptions of Major Parts of the Report  

Part 1: Optimal Multiprocessor Configuration for SAR – describes research for 
determining optimal multiprocessor configurations for instances of the SAR processing 
problem. The research was targeted at how to optimally configure a multiprocessor 
system for given instances of the SAR problem so that the resulting power consumption 
of the multiprocessor system is minimized.  The key to the approach involved making the 
proper trade-off between the number of processors and amount of memory associated 
with the multiprocessor configuration.  References associated with this work are [1A], 
[2B], and [3]. 
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Part 2: Optimal Communication Scheduling for STAP – describes research for 
determining how to best schedule inter-processor communications of a parallel STAP 
algorithm mapped onto a Mercury Race Multiprocessor.  The approach is based on a 
genetic algorithm, and the research also resulted in the development of a fast and 
accurate network simulator for the RACEway® interconnection network. References 
associated with this work are [4C], [5D], [6E], [7], and [8]. 

Part 3: FPGA Power Prediction and Applications – describes mathematical models and 
other approaches developed for predicting power consumption for FPGA circuits. We 
found that predicting power consumption for FPGAs was particularly difficult, as it 
strongly depends on precisely how the chip is configured and the “activity” 
characteristics of the input data being processed. Nevertheless, we generated new and 
important results and tools in this area. We also demonstrated the utility of using FPGA 
circuits for portions of the SAR and STAP applications.  References associated with this 
work are [9F], [10], [11G], [12H], [13], [14], [15I], [16J], and [17]. 

Part 4: Hybrid FPGA/DSP/GPP Platform – describes a prototype hybrid platform that 
was constructed for this project. It includes the detailed design and development of the 
custom interfaces implemented to interconnect the disparate products of the two vendors. 
Some performance results are also included. The reference associated with this work is 
[18K].  
 



 

 

 

5

Part 1: Optimal Multiprocessor Configuration for SAR 

Overview of References [1A], [2B], and [3] 

The real-time embedded application considered in this part, i.e., SAR, as well as many 
others of military interest, are characterized by a common theme: processing a continuous 
stream of data collected from radar sensors. The rate at which data samples flow from the 
sensor(s) to the computational platform is typically very high – often on the order of tens 
or hundreds of millions of samples per second and even higher. Furthermore, the number 
of calculations to be performed on each sample is typically at least 100 FLOPs (floating-
point operations), which amounts to an overall computational throughput requirement 
ranging from at least one to ten billion FLOPs (and often much higher). 

At the beginning of the contract period, approaches capable of providing a 
computational platform that could achieve these types of computational throughput rates 
typically involved a “pipeline of interconnected processors” style of architecture. Such an 
approach could be a valid and effective architecture in some cases. However, situations 
often arose in which the throughput requirements dictated that 100 or more SHARC® (or 
similar) DSP processors were required. In many situations, the associated level of power 
requirement for the computational platform alone posed a severe problem, because of the 
strict power budgets available on UAVs (unmanned aerial vehicles) and satellites where 
these systems are deployed.  

In the paper [1A], we showed how a DSP/GPP-based multiprocessor system could be 
optimally configured using two types of processor/memory daughtercards to minimize 
overall power consumption for SAR applications. We showed that by careful (and often 
counterintuitive) selection of parameters associated with both the hardware (the number 
of daughtercards of two possible types) and the application software (a parameter known 
as the azimuth section size), an optimal configuration (one with minimal power 
consumption) can be derived based on the application of mathematical programming 
techniques. 

Our approach centered on the derivation of two mathematical formulas for given 
instances of the SAR problem: one for the total numbers of processors required and the 
other for the total memory required. Both of these functions are dependent on the choice 
of the section size parameter. The derived functions dictate that if a small section size is 
used, then the associated memory requirements are small, but the processor requirements 
are high. On the other hand, a large section size was shown to result in a requirement for 
fewer processors, but more memory.  

The reason a large section size implies that fewer processors are required is because 
only a small fraction of data is discarded during the calculation of the so-called sectioned 
fast convolutions (refer to Figure 2). This implies that the processors are being used with 
high efficiency when the section size is large. On the other hand, when a small section 
size is used, then more processors are required because a relatively large fraction of data 
is overlapped. From Figure 2, note that the overlapped data samples are actually 
processed twice. Although achieving high processor efficiency is a traditional objective, 
the trade-off is that implementing the associated large section sizes requires extra 
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memory, and extra memory consumes extra power. It is this inherent trade-off between 
processor efficiency, memory, and section size that our approach optimized. 

Kernel

Discard

Overlap
Section

FFT size

Large Overlap/Section ratio ⇒ Small azimuth memory, large number azimuth processors
Small Overlap/Section ratio ⇒ Large azimuth memory, small number azimuth processors

 

Figure 2. This diagram illustrates the method of performing sectioned fast convolutions 
on azimuth input data with a pre-stored kernel. Given that the kernel size is 
fixed, then if the section size is made large, a relatively small fraction of 
samples are discarded for each section, thus making processor efficiency high. 
Conversely, if the section size is small, then a relatively large fraction of 
samples must be discarded for each section, resulting in poor processor 
efficiency, but relatively small memory requirements. 

The two daughtercards assumed to be available in our approach were: Type 1, which 
had six SHARC® processors and a total of 32MB of memory; and Type 2, which had 
two SHARC® processors and a total of 64MB of memory. Thus, our optimization 
procedure was based on minimizing total consumed power based on proper selection of 
three parameters: section size, number of Type 1 cards, and number of Type 2 cards.  
Note that allowing two daughtercards in the configuration put additional constraints on 
the types of configurations that were possible. Thus, in general, arbitrary numbers of 
processors and amounts of memory could not me configured. However, the underlying 
concept of trading the efficiency of processors for more memory was still present. 

One interesting lesson learned from our study happened when we considered a 
situation in which only Type 1 cards were assumed to be available for configuring the 
system (recall that the Type 1 card is “processor rich” and “memory poor” as compared 
with the Type 2 card). For this case of configuring only with Type 1 cards, the 
optimization procedure selected very small section sizes – smaller than one would think 
to be reasonable. We had to think about why this was happening; it went against our 
intuition. After some thought, we realized the reason – the objective of our optimization, 
afterall, was to minimize consumed power, not to maximize processor efficiency. The 
mathematical programming procedure had no regard for processor efficiency; its only 
concern was to use the available resources (in this case a lot of processors, and not much 
memory) to minimize total consumed power. If that means inefficient use of the 
processors, then so be it. 

Consider why it is generally not optimal to force our expectations about what 
“reasonable” processor efficiencies should be for the case discussed in the previous 
paragraph. To achieve such efficiencies may require substantial memory (refer to Figure 
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2). So, if “reasonable” processor efficiencies are forced into the configuration, then the 
number of cards required by the configuration must increase – not because more 
processors are required, but because more memory is required. In fact, some processors 
will be idle while the few “efficient ones” are working away – the resource being fully 
used is the memory. Recall that consumed power is in direct proportion to the number of 
cards in the configuration. This helped us understand a new interpretation for what our 
optimization procedure was actually doing: piecing together the “pre-configured silicon” 
cards available in the most power efficient way possible. Forget about the importance of 
processor efficiencies that we study/teach in our parallel processing courses!  

References [2B] and [3] further refine the results of [1A]. The most notable refinement 
involves the concept of configuring a compute node. In the Mercury system, a compute 
node (CN) is an entity on a daughtercard consisting of one or more compute elements 
(CEs). A compute element, in this context, is a SHARC® processor. In our study, the 
Type 1 cards were populated with CNs in which each CN contains 3 CEs; and the Type 2 
cards were populated with CNs in which each CN contains 2 CEs. In [2B] and [3], we 
defined formulations to our optimization problem in which the utilization of each CN is 
determined by the optimization procedure.  

Figure 3 illustrates optimal configurations for a wide range of SAR operating points. 
The horizontal resolution axis represents the desired SAR image resolution in meters, and 
the vertical velocity axis is the speed of the vehicle (e.g., UAV) in meters/sec. The legend 
on the right side of the figure indicates two possible choices (X and Y) for CN 
configurations. The value of XT and YT indicate the card Type (1 or 2) selected for the X 
and Y configurations. For example, the red square symbol ‘ ’ is associated with the use 
of card Type 1 for the X configuration (i.e., XT = 1) and card Type 2 for the Y 
configuration (i.e., YT = 2). Furthermore, for the X configuration, one CE (for each CN) is 
utilized for range processing (i.e., Xr =1) and two CEs are used for azimuth processing 
(i.e., Xa = 2).  Similarly, for the Y configuration, none of the CEs are used for range 
processing, and both CEs (for each CN) are used for azimuth processing (because Yr = 0 
and Ya = 2). For the sake of comparison, consider now the configurations associated with 
the blue times symbol ‘×’ where both the X and Y configurations use the Type 1 card, but 
the utilization of the CNs for X and Y are distinct. The number of configured CNs, and 
thus the total number of cards of each type, is also provided by the optimization 
procedure, but is not shown on Figure 3.  

Although subtle, perhaps, this part of the work is extremely important because it cuts 
to the heart of a bigger issue. The most fundamental questions of interest for these types 
of systems should not necessarily be expressed in terms of processor efficiencies, or even 
processors or memories at all; what is important is the “configuration of the silicon,” i.e., 
how can it be configured to minimize SWAP. The mixing of the two card types we 
studied is only a rough approximation to this general concept of “configurable silicon.” 
With two discrete card types available, many, but not anywhere near all, possible 
combinations of processors and memories can be configured. But remember, processors 
and memory are not the only things we can build out of silicon. More specialized 
functional units can also be built.  
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Parts 3 and 4 of this report deal with a key aspect of the project – namely, is it always 
necessary to configure silicon as discrete processor and memory modules? Could it be 
that silicon configurations consisting of modules or functional units less complex than 
processors and memories are also possible, and have superior SWAP characteristics in 
some situations? Before getting to the answers to these questions, the next part of this 
report deals with optimizing the SWAP performance of a multiprocessor implementation 
for STAP. Although Part 2 is similar to Part 1 in the sense that only processors and 
memories (and not reconfigurable computing) are assumed in the computing platform, 
the mechanism for minimizing SWAP in the STAP application centers around effective 
use of the interconnection network that supports interprocessor communication.   
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Figure 3. Optimal CN Configurations of the CN-constrained Model [2B]. 
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Part 2: Optimal Communication Scheduling for STAP 

Overview of References [4C], [5D], [6E], [7], and [8] 

The work here develops and evaluates a genetic-algorithm-based (GA-based) 
optimization technique for the scheduling of messages for a class of parallel embedded 
signal processing techniques known as space-time adaptive processing (STAP). The GA-
based optimization is performed off-line, resulting in static schedules for the compute 
nodes of the parallel system. These schedules are utilized for the on-line implementation 
of the parallel STAP application. The primary motivation and justification for devoting 
significant off-line effort to solving the formulated scheduling problem is the resulting 
reduction of hardware resources required for the actual on-line implementation. Studies 
illustrate that reductions in hardware requirements of around 50% can be achieved by 
employing the results of the proposed scheduling techniques. This reduction in hardware 
requirement is of critical importance for STAP, which is typically an airborne application 
in which the size, weight, and power consumption of the computational platform are 
often severely constrained. 

For an application implemented on a parallel and embedded system to achieve 
required performance, it is important to effectively map the tasks of the application onto 
the processors in a way that reduces the volume of inter-processor communication traffic. 
It is also important to schedule the communication of the required message traffic in a 
manner that minimizes network contention so as to achieve the smallest possible 
communication times.  

Mapping and scheduling can both – either independently or in combination – be cast 
as optimization problems, and optimizing mapping and scheduling objectives can be 
critical to the performance of the overall system. For embedded applications, great 
importance is often placed on determining minimal hardware requirements that can 
support a number of different application scenarios. This is because there are typically 
tight constraints on the amount of hardware that can be accommodated within the 
embedded platform. Using mappings and schedules that minimize the communication 
time of parallel and embedded applications can increase the overall efficiency of the 
parallel system, thus leading to reduced hardware requirements for a given set of 
application scenarios.  

The work here focuses on using a GA-based approach to optimize the scheduling of 
messages for STAP algorithms. STAP is an adaptive signal processing method that 
simultaneously combines signals received from multiple elements of an antenna array 
(the spatial domain) and from multiple pulses (the temporal domain) of a coherent 
processing interval. The focus of this research assumes STAP is implemented using an 
element-space post-Doppler partially adaptive algorithm; refer to references [6E], [7], 
and [8] for details.  

STAP involves signal processing methods that operate on data collected from a set of 
spatially distributed sensors over a given time interval. Signal returns are composed of 
range, pulse, and antenna-element digital samples; consequently, a three-dimensional (3-
D) data cube naturally represents STAP data. A distributed memory multiprocessor 
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machine is assumed here for the parallel STAP implementation. The core processing 
requirement proceeds in three distinct phases of computation, one associated with each 
dimension of the STAP data cube. After each phase of processing, the data must be re-
distributed across the processors of the machine, which represents the communication 
requirements of this parallel application. Thus, there are two primary phases of inter-
processor data communication required: one between the first and second phases of 
processing and one between the second and third phases of processing. After all three 
phases of processing are complete for a given STAP data cube, a new data cube is input 
into the parallel machine for processing. 

A proposed GA-based approach is used to solve the message-scheduling problem 
associated with each of the two phases of inter-processor data communication. This GA-
based optimization is performed off-line, and the results of this optimization are static 
schedules for the compute nodes of the parallel system. These schedules are used within 
the on-line parallel STAP implementation. The results of the study show that significant 
improvements in communication time performance are possible using the proposed 
approach for scheduling. It is then shown that these improvements in communication 
time translate to reductions in required hardware for a class of scenarios. Performance of 
the mappings and schedules are evaluated based on a Mercury RACEway® network 
simulator developed under this project and described in references [4C] and [7]. 

For this work, the STAP data cube is partitioned into sub-cube bars of vectors where 
each vector is mapped onto a given CN (compute node), refer to [6E] for more details. A 
two-dimensional process set, as described in [8], defines the mapping of data onto CNs 
for each computational phase. Additionally, the process set defines the communication 
pattern for the required “distributed corner turns” of the STAP data cube. 

Summarizing the results published in [6E] and [8], it is demonstrated that off-line GA-
based message scheduling can significantly improve the communication performance in a 
parallel system.  When compared to baseline and randomly generated schedules, the GA-
based schedules are significantly superior – typically reducing communication times by 
between 20% and 50%, see [8] for details.   

Interestingly, it is shown that the best mapping – defined as a mapping that minimizes 
a mapping objective function – is not always the best choice in terms of minimizing 
overall communication time. In particular, as the number of CNs is increased, optimal 
mappings that require only one phase of communication generally report higher overall 
communication times than those good (but not optimal) mappings that require two non-
trivial phases of communication.  

The optimization of mapping and scheduling, either independently or in combination, 
is critical to the performance of the STAP application for embedded parallel systems. For 
such systems, great significance is placed on minimizing overall execution time, which 
includes both computation and communication components. Such reductions in execution 
time also translate into improved hardware efficiency and thus reduced hardware 
requirements, which is often critical.  

Through extensive numerical studies, it is shown in [6E] and [8] that the GA-based 
optimization approaches can yield mappings and schedules that greatly improve the on-
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line performance and reduce the hardware requirements of the parallel embedded system. 
Examples are provided that illustrate the optimal mapping and scheduling methodologies 
of [6E] and [8] can produce hardware savings of 50% and more when compared to 
typical solutions to the mapping and scheduling problems that might be employed by 
practitioners. Because of limitations on the size of problems that were 
executed/simulated, systems up to a size of only 32 processors were investigated. 
However, from the trends observed in overall completion times, it is apparent that even 
more significant savings in hardware/power requirements are realizable for STAP 
applications that require substantially larger systems having hundreds or even thousands 
of processors. 
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Part 3: FPGA Power Prediction and Applications 

We discovered during the project period that predicting power consumption for an FPGA 
is a very difficult task. There were no commercially available tools that accurately 
predicted power consumption for any of the existing FPGAs. Thus, a major focus of this 
part of the work involved the development of accurate methods for predicting FPGA 
power consumption. References generated by this project in the area of power prediction 
include [9F], [10], and [11G], which are overviewed in Section 3.1. 

In addition to trying to understand and predict FPGA power consumption, we also 
studied the types of computations that could be effectively mapped onto FPGAs. In 
theory, given enough gates, one could imagine configuring an FPGA board to behave as 
a microprocessor. Thus, again in theory, an FPGA board could be used to perform any 
type of calculation. However, based on the available technology, this would be extremely 
impractical. Our goal was to therefore use FPGAs to devise useful modules that are much 
less complex than a microprocessor, thereby reducing the SWAP overhead inherent when 
computations are performed only on microprocessors and/or DSPs. So, one of our aims 
was to characterize the types of computations that can be practically implemented in 
FPGAs. References produced in the area of mapping applications onto FPGAs include 
[12H], [13], [14], [15I], [16J], and [17], and these are overviewed in Section 3.2.  
 
3.1 FPGA Power Prediction 

Overview of References [9F] and [10] 

The work published in [9F] and [10] describes a practical and accurate power prediction 
tool for the Xilinx® 4000-series FPGA. The utility of the tool is that it enables FPGA 
circuit designers to evaluate the power consumption of their designs without resorting to 
the laborious and expensive empirical approach of instrumenting an FPGA board/chip 
and/or taking actual power consumption measurements. Preliminary evaluation of the 
tool indicates that an error of less than 5% is usually achieved when compared with 
actual physical measurements of power consumption.     

The tool, which is implemented in Java, takes as input two files: (1) a configuration 
file associated with an FPGA design and (2) a pin file that characterizes the signal 
activities of the input data pins to the FPGA. The configuration file defines how each 
CLB (configurable logic block) is programmed and defines signal connections among the 
programmed CLBs. The configuration file is a text file that is generated using a Xilinx® 
M1 Foundation Series utility called ncdread. The pin file is also a text file, but is 
generated by the user. It contains a listing of pins that are associated with the input data 
for the configured FPGA circuit. For each pin number listed, probabilistic parameters are 
provided which characterize the signal activity for that pin. 

Based on the two input files, the tool propagates the probabilistic information 
associated with the pins through a model of the FPGA configuration and calculates the 
activity of every internal signal associated with the configuration. The activity of an 
internal signal s, denoted as, is a value between zero and one and represents the signal’s 
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relative frequency with respect to the frequency of the system clock, f.  Thus, the average 
frequency of signal s is given by as f. 

Computing the activities of the internal signals represents the bulk of computations 
performed by the tool. Given the probabilistic parameters for all input signals of a 
configured CLB, the probabilistic parameters of that CLB’s output signals are determined 
using a mathematical transformation.  Thus, the probabilistic information for the pin 
signals is transformed as it passes through the model of the configured logic, defined by 
the configuration file. However, the probabilistic parameters of some CLB inputs may 
not be initially known because they are not directly connected to pin signals, but instead 
are connected to the output of another CLB for which the output probabilistic parameters 
have not yet been computed (i.e., there is a feedback loop). For this reason, the tool 
applies an iterative approach to update the values for unknown signal parameters. The 
iteration process continues until convergence is reached, which means that the 
determined signal parameters are consistent based on the mathematical transformation 
that relates input and output signal parameter values, for every CLB.  

The average power dissipation due to a signal s is modeled by ½ Cd(s)V 2as f, where 
d(s) is the Manhattan distance the signal s spans across the array of CLBs, Cd(s) is the 
equivalent capacitance seen by the signal s, and V is the voltage level of the FPGA 
device. The overall power consumption of the configured device is the sum of the power 
dissipated by all signals of the configured FPGA. 

For the study conducted in [9F], a total of 70 power measurements were made using 
five different configuration files and fourteen different data sets. Descriptions of these 
configuration files and data sets are given in [9F]. Each of the configuration files used 
take a total of 32-bits of data as input. The first three configurations (fp_mult, fp_add, 
int_mult) each take two 16-bit operands on each clock cycle, and the last two (serial_fir 
and parallel_fir) each take one 32-bit complex operand on each clock cycle. The 32 bits 
of input data are numbered as 0 through 31, and two key parameters are used to 
characterize these bits: an activity factor, a and a probability factor, p. As mentioned 
earlier, the activity factor of an input bit is a value between zero and one and represents 
the signal’s relative frequency with respect to the frequency of the system clock, f.  The 
probability factor of a bit represents the fraction of time that the bit has a value of one. 

Figure 4 shows plots of the measured power for all combinations of the configuration 
files and data sets considered. For all cases, the clock was run at f = 30 MHz. With the 
exception of the fp_mult configuration file, the most active data set file (number 6) is 
associated with the highest power consumption. Also, the least active data set file 
(number 5) is associated with the lowest power consumption across all configuration 
files. There is somewhat of a correlation between the number of components utilized by 
each configuration and the power consumption; however, it turned out that even though 
the serial_fir implementation is slightly larger than parallel_fir, it consumes less power. 
This is likely due to the fact that the parallel_fir design requires a high fan-out (and thus 
high routing capacitance) to drive the parallel multipliers. 

In addition to the graph shown in Figure 4, additional figures are provided in [9F] that 
overlay estimates of power consumption predicted by the tool developed in this project. 
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As mentioned above, predicted values of power were generally within 5% of actual 
measured values. 
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Figure 4. Measured power consumption of the configuration files and data sets from [9F]. 

 
Overview of Reference [11G] 

The method used by the above tool to compute signal activities was based on a 
previously published approach from another research group. That approach has some 
difficulties, primarily related to its time complexity. In [11G], a new analytical approach 
was developed by us for calculating signal activities. Our approach is based on a Markov 
chain signal model, and directly accounts for correlations present among the signals. We 
verified the accuracy of the approach by comparing signal activity values calculated 
using our approach with corresponding values produced through simulation studies. It 
was also demonstrated that the proposed approach is much more computationally 
efficient than competing approaches. In addition to describing the new approach for 
calculating signal activities, [11G] also provides a comprehensive review of past 
approaches, including the approach implemented for the tool described in [9F] and [10].  
 
3.2 FPGA Applications 

Overview of References [12H] and [13] 

In references [12H] and [13], techniques for mapping portions of space-time adaptive 
processing (STAP) computations onto FPGAs are described. The output of STAP is a 
weighted sum of multiple radar returns, where the weights for each return in the sum are 
calculated adaptively and in real-time. The most computationally intensive portion of 
most STAP approaches is the calculation of the adaptive weight values, which typically 
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constitutes over 90% of all the computations needed in adaptive processing. Calculation 
of the weights involves solving a set of linear equations based on an estimate of the 
covariance matrix associated with the radar return data. The traditional approach for 
computing the adaptive weights is based on a direct method called QR-decomposition. 
This method has a fixed computational complexity, which depends on the size of the 
equation matrix and provides the exact solution. An alternative approach based on an 
iterative method called Conjugate Gradient was investigated, which allows for trading off 
accuracy for reduced computational complexity. The two approaches are analyzed and 
compared in [13]. The results show that the Conjugate Gradient approach can reduce the 
computations needed at the cost of reduced accuracy in some cases. 

Existing computational strategies for STAP typically rely exclusively on the use of 
multiple DSPs and/or GPPs. An alternative strategy is proposed in [12H] and [13], which 
makes use of FPGAs as vector co-processors that perform inner product calculations. 
Two different “inner-product co-processor” designs are introduced for use with a host 
DSP or GPP. The first has a multiply-and accumulate structure and the second uses a 
reduction-style tree structure having two multipliers and an adder. For a fixed clock rate, 
the second design can provide a higher throughput, but requires more computation from 
the host (to perform the final summation of the partial sums).  

In the work of [12H] and [13], the two inner-product co-processors were implemented 
using a block floating point format, which is much simpler to implement than standard 
floating point units. We also investigated overall accuracy of block floating point versus 
full floating point. It was demonstrated that the block floating point co-processors 
produce acceptable accuracy results for input data distributions that are uniformly 
distributed. Poor results are obtained, however, for cases where one or a few of the 
elements are much larger than the rest of the numbers. This is because the block-floating-
point architecture normalizes all the exponents to the maximum exponent by shifting out 
the least significant bits of the mantissa so that all the exponents are equal, and then all 
the operations are integer arithmetic operations (based on the resulting mantissas), which 
are much easier to perform than general floating-point operations. The shifting out of the 
bits produces inaccuracy in the computations. For all the ranges of numbers considered, 
if the numbers are uniformly distributed, then the exponent distribution has an increasing 
exponential shape with a majority of the numbers close to the maximum value in the 
exponent domain. This results in a small number of bits from the mantissas of the 
numbers being shifted out, on the average. Another important point is that the multiply 
implementation uses a 15-bit mantissa, which implies that the mantissa of the input 
floating-point number is truncated to 15 bits from 23 bits, which itself introduces some 
inaccuracies. 
 
Overview of Reference [14] 

In reference [14], further studies of inner-product co-processor designs were conducted. 
In contrast to the inner product designs of [12H] and [13], which were based on a block 
floating point format, both floating point and integer formats were used in [14], both 
using 16-bit formats. The studies demonstrated that inner-product co-processors, for both 



 

 

 

16

integer and floating-point data, could fit into current (at that time) FPGA technology and 
achieve significant speed and throughput. The results of the implementations show that it 
is feasible and beneficial under certain circumstances to implement floating-point and 
integer operations in FPGAs (i.e., such as when a custom data format can be used, as 
with the SHARC® DSP which can convert back and forth between IEEE 32-Bit floating 
point and the SHARC® DSP 16-bit floating point formats).   

The studies in [14] also considered the advantages and disadvantages of employing 
different degrees of pipelining in the inner product designs. One interesting (and 
somewhat counterintuitive) outcome related to pipelined versions of the designs was that 
adding more pipeline stages did not always allow for an increased clock speed at which 
the circuit could be executed. This was due to the fact that adding in the pipeline stages 
also added more overall complexity, which made it more difficult for the place-and-route 
routines of the FPGA design tool to find good implementations. Thus, as more pipelined 
stages were added, critical signal lengths sometimes increased, dictating that the clock 
rate actually had to be decreased.  Estimates of power consumption were also evaluated 
for all designs considered in [14].  

 
Overview of Reference [15I] 

Two major contributions are presented in [15I]. First, it is shown that the core 
computations from the SAR application, including both the range compression and 
azimuth processing phases, can be structured as a single deep computational pipeline that 
can be implemented directly on an array of FPGAs. Past results for high-throughput SAR 
processing (e.g., refer to [1A], [2B], and [3]) typically assume the computations are to be 
mapped onto a distributed memory multiprocessor system in which a subset of the 
available compute elements (CEs) is assigned to perform range processing and the 
remaining CEs perform azimuth processing. In this type of traditional approach, a 
number of processed range vectors are sent from the range CEs to the azimuth CEs where 
they are buffered in memory. After a prescribed number of compressed range vectors are 
present in the memory space of the azimuth CEs, azimuth processing commences on the 
azimuth CEs. Because of the significant intermediate buffer storage required by this 
approach, and the associated placing and fetching of data in this memory space by the 
range and azimuth CEs, respectively, this type of SAR implementation is generally not 
thought to be “purely streaming.” However, as is presented in [15I], these computations 
(both phases) can in fact be structured as a single computational pipeline, which can be 
directly mapped onto an array of FPGAs.  

In the proposed approach, no intermediate memory buffer is required between the two 
phases of computation. Instead, within the structure of the computational pipeline are 
long segments of delay elements that effectively provide the intermediate storage 
associated with the more traditional approach. Figure 5 illustrates the structure of the 
computational pipeline. In the figure, small values of parameters are used for the purpose 
minimizing the size of the pipeline, while still illustrating its basic structure. Realistic 
parameters values would be on the order of thousands, resulting in a pipeline with 
millions of registers. Further details on sizing analysis and hardware comparisons 
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between a deep pipeline implementation versus a multiprocessor implementation are 
provided in the online link to the presentation materials for reference [15I]. 
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Figure 5. Structure of the deep pipeline. 

 
 One potential advantage of the proposed approach is that data need not be 

continuously stored and then fetched from a separate memory module by CEs (which, 
incidentally, can require significant power consumption). Instead, the data streams 
continuously through a long computational pipeline. Within this pipeline are the taps of 
the FIR (finite impulse response) implementations of both the range and azimuth 
processing, interspersed with segments of delay elements. Although the resulting pipeline 
may be thousands of stages long for practical values of SAR parameters, it is a viable 
approach because end-to-end latencies on the order of 1 millisecond are typically 
acceptable, provided that the required throughput is achieved.  

The second contribution presented in [15I] demonstrates how signal activity 
parameters of incoming data can be transformed, before the data are processed by a 
computational pipeline, as a means of reducing overall power consumption. The key to 
understanding this approach is the realization that the activity levels of the input signals 
to the computational pipeline dictate its level of power consumption. The activity of a 
given input signal (i.e., bit position) is defined as the fraction of time that the signal 
transitions relative to the system clock. We demonstrated that increasing/decreasing the 
signal activities of input data to a pipelined circuit implemented on an FPGA also 
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increases/decreases the power consumption of the circuit. In [15I], we introduce a 
concept for how the activities of the input data can be transformed (pre-processed) so that 
the resulting (transformed) signals that are input into the computational pipeline have 
activity values that are well-matched with the pipelined circuit in terms of minimizing 
consumed power. At the end of the computational pipeline, an inverse transformation is 
applied to the output values to convert them back to their proper (and meaningful) 
representation. This concept is illustrated in Figure 6. The approach is based on two 
fundamental assumptions: (1) that the power consumption of the computational pipeline 
is significantly higher than that of the computational structures implemented to perform 
the transform and inverse transformation of the data and (2) that the computations 
performed within the computational pipeline are linear and time invariant. 

 
Deep Pipeline

Assume Power Model
P(a’)

input 
stream 

output 
stream

-1TT
a a’

 
Figure 6. Using activity transformations to minimize power consumption. 

 
Overview of References [16J] and [17] 

References [16J] and [17] present a comparative study of different parallel prefix circuits 
from the point of view of power-speed trade-off. The prefix circuit plays an important 
role in many applications such as the carry-look-ahead adder, ranking, packing, and radix 
sort. The power consumption and the power-delay product of seven parallel prefix 
circuits were compared. By assuming a linear capacitance model, combined with 
PSpice® simulations, we investigated the power consumption in the parallel prefix 
circuits. The degrees of freedom studied include different parallel prefix architectures and 
voltage scaling. The results show that the use of the linear output capacitance assumption 
provides power estimates that are consistent with those obtained using PSpice® 
simulations.  It was found that the divide-and-conquer prefix circuit, which is the fastest 
circuit considered, consumes the most power. Also – according to PSpice® simulations – 
the power-delay product of the LYD (Lakshmivarahan-Yang-Dhall) prefix circuit was 
the best (i.e., lowest) among the circuits studied, while the power-delay product of the 
divide-and-conquer was the highest. This study demonstrates the importance of careful 
analysis of the speed-power trade-off when considering architectural choices for 
implementing a given computational function in hardware. 
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Part 4: Hybrid FPGA/DSP/GPP Platform 

Overview of Reference [18K] 

The prototype platform was developed to demonstrate the advantages and trade-offs 
associated with the combined use of different hardware technologies for two embedded 
radar-processing applications, namely SAR and STAP. The primary metrics of interest 
are size, weight, and power utilizations. The developed system can be configured with 
FPGAs, DSPs, and/or GPPs. Although the prototype system was not evaluated through 
fielded studies, experiments involving continuous input streams at relatively high rates 
were conducted in the laboratory using unprocessed radar data as input.  

The FPGA components of the prototype system are commercially available 
WildOneTM and WildForceTM boards (from Annapolis Microsystems) populated with 
4000-series Xilinx® parts. The WildForceTM boards each have four 4085-series FPGAs 
plus one control FPGA. The DSP/GPP components of the system are within a Mercury 
Race Multicomputer configured with both SHARC® and PowerPC® CNs. The Mercury 
system can be configured with up to eight PowerPC® nodes and eight SHARC® 
compute nodes (each SHARC® CN actually contains three SHARC® DSP chips).  

An overview of the overall architecture is depicted in Figure 7. A more detailed view 
of the major components of the hybrid system are illustrated in Figure 8, and a 
photograph of the actual prototype system is provided in Figure 9. 

The source PC is responsible for initially loading unprocessed radar data (from disk) 
into a circular buffer within its main memory. Once the input data is loaded into the 
circular buffer, the source PC then continuously (and repeatedly) streams this data into 
the front-end FPGA subsystem, denoted as (F) in Figures 7, 8, and 9. It was necessary to 
locate the input data in a large main memory buffer in order to achieve realistic data 
throughput rates, which would otherwise not be possible if the data were streamed 
directly from the disk of the source PC.  All of the Annapolis FPGA boards are PCI-
based and reside on the data source and/or data sink PCs. A total of four WildForceTM 
boards are available, and zero or more of these may reside on the source and sink PCs. 
The source and sink PCs also contain one WildOneTM board each. The WildOneTM 
boards are not used for computation; they handle the data communication (through the 
PCI bus) between the PCs and the FPGA subsystems. The data communication among all 
FPGA boards is through two types of 36-bit wide connectors, one called systolic and one 
called SIMD.   

The data communication between the front-end FPGA subsystem (F) and the 
DSP/GPP subsystem is a custom interface developed using the systolic connector from 
Annapolis and the RIN-T input device from Mercury. Similarly, the data communication 
between the DSP/GPP subsystem and the back-end FPGA subsystem (B) is through a 
custom interface developed using the ROUT-T output device from Mercury and the 
systolic connector from Annapolis. More details on the design of the interfaces between 
the Mercury and the front- and back-end subsystems are provided in Figures 10 and 11, 
respectively.  
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Figure 7.  Block diagram of the FPGA/DSP/GPP prototype architecture. 

Design and implementation of the interface connecting the Mercury to the back-end 
FPGA subsystem (B), shown in Figure 11, was particularly challenging. The clock signal 
used to strobe the data from the Mercury was not programmable; it was fixed at 33 MHz.  
It turned out that the input impedance of the back-end FPGA subsystem was not very 
well matched with the output of the Mercury subsystem. As a result, the maximum clock 
rate possible was only about 8Mhz, or about one-fourth of fixed 33Mhz clock available. 
So, we implemented a scheme in which four copies each data word was transmitted from 
the Mercury, which effectively reduced the clock rate by a factor of four. We also had to 
include a packing scheme, which encoded two bits of each transmitted word to enable 
detection of the boundary between groups of copied data. This was necessary because the 
actual number of copies of each word received by the back-end GPGA subsystem was 
unpredictable, and varied between two and four. More details on this scheme can be 
found at the online link to the presentation materials for reference [18K]. 

Figures 12 and 13 illustrate how the major computational components of the SAR and 
STAP applications can be mapped onto the prototype system. A candidate mapping is 
defined by assigning the computations of each major component to one or both of the 
symbols shown in each block (which correspond to one of the FPGA or DSP/GPP 
subsystems defined in Figure 7). Using SAR to illustrate, one mapping would be to 
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perform all of the range compression on the front-end FPGA subsystem (F) and then 
perform all azimuth processing on the DSP/GPP subsystem. Another possible mapping is 
defined by using the FPGA subsystems and the DSP/GPP for both components of 
computation. It is also possible to use only the DSP/GPP subsystem for both components 
of computations.  
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Figure 8. Detail of the FPGA/DSP/GPP prototype architecture. 

 
The SAR studies were designed by adapting the RASSP (Rapid Prototyping of 

Application Specific Signal Processors) benchmark developed originally by Lincoln 
Laboratory at MIT. The benchmark, which was originally implemented in serial C code, 
was first modified to execute on the parallel DSP/GPP subsystem. A data-streaming 
component was also added so that input data can be sent continuously from the data 
source of the prototype system. Core computations from the range compression and 
azimuth processing components were implemented for the FPGA subsystems, as 
described earlier in Part 3 of this report.  

An overview of SAR processing flow is provided in Figure 14. The data distribution 
scheme for SAR is illustrated in Figure 15. For the case shown in the figure, a total of 
eight CNs were utilized: two SHARC® CNs (one for input and the other for output) and 
six PowerPC® CNs (two for range processing and four for azimuth processing). A 
detailed timing diagram is shown in Figure 16. Note from this figure that the processing 
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is well balanced and that the amount of idle time for each CN is relatively small. A 
summary of time and throughput results are provided in Figure 17. Note that the required 
input and output throughputs realized for this particular study, 0.71 Mbytes/sec and 1.42 
Mbytes/sec, are well within the maximum capacity supported by the custom interfaces of 
60 Mbytes/sec and 31 Mbytes/sec (refer to Figures 10 and 11). This implies that the 
constructed prototype system is capable of processing much more intensive instances of 
SAR processing.  

Hybrid FPGA/DSP/GPP Prototype Architecture
Photograph

Data Sink
PC

Data Source
PC

Custom Interface Cables

Mercury
DSP/GPP 

Subsystem

Annapolis
FPGA

Subsystem
(F) Annapolis

FPGA
Subsystem

(B)

SPARC

 
Figure 9. Photograph of the FPGA/DSP/GPP prototype architecture. 

 
The STAP studies were designed by adapting the RT_STAP (Real Time STAP) 

benchmark developed originally at the MITRE Corporation. This benchmark was already 
implemented for parallel execution on a PowerPC-based Mercury system. This 
implementation was expanded to also enable execution on SHARC® compute nodes. The 
same basic data streaming component that was developed for SAR was also adapted to 
enable the STAP input data to be sent continuously from the data source. Core 
computations from the range compression and weight computation components from the 
STAP processing flow were implemented for the FPGA subsystems.  

Similar to the figures associated with SAR, an overview of the scheme used to stream 
STAP processing is provided in Figure 18. Note from the figure that two SHARC® 
compute nodes are used for I/O and eight PowerPC® are used to actually perform the 
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STAP computations (for the particular instance of STAP considered). Unlike SAR, where 
CNs are dedicated exclusively to one particular phase of the computation, in the STAP 
implementation all CNs work on all three phases of computation. Figure 19 illustrates the 
three phases of computation required by STAP and the two communication phases (i.e., 
re-partitioning of the data cube) between the three phases. A space-time diagram is 
provided in Figure 20 followed by a summary of obtained throughput results in Figure 
21.  As was the case for SAR, note from Figure 21 that the required input and output 
throughputs realized for this particular study are well within the maximum capacity 
supported by our custom interfaces. 
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Figure 11. Interface Design: Communication from Mercury to Annapolis FPGA (B). 
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Figure 12. Illustration of how the major computational components of SAR processing 
can be mapped onto the hybrid system. 
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Figure 13.  Illustration of how the major computational components of STAP processing 
can be mapped onto the hybrid system. 
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Figure 15. Data distribution for Parallel SAR Processing on Mercury. 
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Space-Time Diagram for Streaming Parallel SAR Processing
Using 6 PPC CNs for Processing and 2 SHARC CNs for I/O
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Figure 16. Space-time diagram for streaming parallel SAR processing. 
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Figure 17. Throughput requirements achieved for streaming parallel SAR processing. 
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Figure 18. Streaming parallel RT_STAP on Mercury Subsystem. 
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Figure 19. Parallel RT_STAP on Mercury Subsystem. 
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Space-Time Diagram for Parallel RT_STAP 
Using 8 PPC CNs for Processing and 2 SHARC CNs for I/O
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Figure 20. Space-time diagram for parallel RT_STAP. 

 
 



 

 

 

32

RT_STAP Data Cube

C
ha

nn
el

s 
(1

6)

Pulse
s (

64
)

Samples (1920)

STAP 

D
op

pl
er

s 
(6

4)

Ranges (480)

Output Complex
Data Matrix

23 msecGather Output Data

4 secDistribute Input Data

4.5 secTotal Time

99.36 msecQR Decomposition
112.48 msecSecond Rotation
25.32 msecDoppler Filter
21.18 msecFirst Rotation
299.48 msecPulse Compress

TimeFunction

Input Data Size = 16 × 64 × 1920 × 2 = 4 MBytes 
Output Data Size = 64 × 480 × 8 = 0.25 MBytes

Input Throughput = 4 Mbytes/4.5 sec 
= 0.89 Mbytes/sec

Output Throughput = 0.25 Mbytes/4.5 sec
= 0.056 Mbytes/sec

Throughput Requirements for Medium Case Parallel RT_STAP 
Using 8 PPC CNs for Processing and 2 SHARC CNs for I/O

 

Figure 21. Throughput requirements achieved for the medium case parallel RT_STAP. 
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Conclusion 

Technology Transfer 

Technology transfer took place along five main paths: (1) the DARPA Adapted 
Computing Systems (ACS) community through PI (Principal Investigator) meetings and 
other conferences (plus communications with PIs and program managers in related 
areas); (2) the employees and technical support contacts at Mercury Computer Systems, 
Inc.; (3) the employees and technical support contacts at Annapolis Micro Systems, Inc.; 
(4) contacts with various defense contractors such as Northrop Grumman; and (5) the 
academic high-performance embedded computing research community. 

Regarding path (1), we worked with DARPA and other PIs associated with related 
projects to ensure efficient transfer of information and technology.  We attended all PI 
meetings and helped support DARPA in presenting the results of this effort for further 
program funding.  

For paths (2) and (3), we consulted with the vendors on a regular basis, especially 
during the period of time in which the prototype system was being constructed.  We kept 
both vendors informed on the current status of the prototype throughout the project. The 
success of our project sparked interaction between the two vendors in terms of defining 
and refining interface standards for interconnecting their products. These new standards, 
which were not available at the time we were constructing our prototype, make it much 
easier to construct an FPGA/DSP/GPP system such as the one implemented for this 
project.   

The transfer along path (4) was important because it enabled our proposed approaches 
to be considered and evaluated by defense systems designers and end-users. Also, staying 
in close contact with major defense contractors and other contractors that were part of the 
ACS program, ensured that the approaches and systems we developed were realistic. 

As indicated by path (5), it was important to keep the academic research community 
informed about our developments. The publications that resulted from this project have 
made an impact and serve to illustrate the types of research of interest to DARPA. It also 
illustrated that there is an abundance of basic, fundamental research to be done on the 
way to solving important problems of military interest. 

 
Deliverables 

This project delivered an abundance of results of both practical and theoretical 
importance. Many of these results have been published as journal and conference papers, 
and copies of these papers are provided in the appendices of this report. Online links to 
delivered publications, presentation materials, dissertations, theses, and additional 
materials are provided in the References and Additional Materials sections of the report. 
Associated with each publication is one or more tool or technique of immediate practical 
importance to practitioners in the area of embedded high-performance systems design 
and implementation. Also delivered was a prototype platform in which the three 
technologies of interest (FPGA, DSP, and GPP) were integrated into a single high-
performance computational engine. This platform served as a test bed in which 
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experimental tests, evaluations, and assessments associated with the research were 
conducted.  

The theme of the project was to focus on techniques and systems for minimizing 
power consumption requirements for two particular radar-processing applications. In 
addition to providing results along these lines, many of the techniques and results 
delivered are applicable to a much broader set of problems that arise in high-
performance, SWAP-constrained embedded systems.  
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Abstract-The creation of a synthetic aperture radar 
(SAR) image involves processing radar return signals 
in real-time using a computing platform on board the 
aircraft that houses the SAR system. In such envi- 
ronments, it is important to minimize the total power 
consumption of all onboard systems. This is especially 
true for applications that utilize small unmanned air- 
craft or satellites. In this paper, a mathematical op- 
timization technique is formulated - based on nonlin- 
ear programming - for determining the optimal (i.e., 
minimal consumed power) configuration of an onboard 
parallel computing platform for SAR processing. The 
target hardware for thin study is a Mercury Race Sys- 
tem that is assumed to be configurable using a com- 
bination of two types of daughtercards: one type has 
six processors and a total of 32MB of memory; the 
other type has two processors and a total of 64MB of 
memory. 

1    INTRODUCTION 

Because radar is a ranging instrument, the resolu- 
tion associated with a single radar return depends on 
the width of the transmitted pulse; the shorter the 
pulse, the higher the resolution. However, generating 
short radar pulses requires high power [2]. In many 
applications where very high-resolution radar images 
are desired, there are hard constraints on the allow- 
ahle size, weight, and power of the radar system (e.g., 
satellites and immanned aircraft). Thus, radar sys- 
tetns that can generate extremely narrow pulses are 
not feasible in such applications because of their asso- 
ciated large size and/or high power requirements. 

Synthetic aperture radar (SAR) is a processing 
technique for achieving high-resolution images from 
relatively small and low-power radar systems. Specif- 
ically, SAR involves the processing of multiple low- 
resolution radar returns to emulate a high-resolution 
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return. Typical applications for SAR include ground 
surveillance and terrain mapping. Advantages of us- 
ing SAR instead of optical imaging techniques include 
radar's immunity to weather and lighting conditions. 
Image resolutions for typical SAR applications cai 
range from 50 m down to 0.5 m [3]. Due to space 
limitations, detailed backgroxmd information on the 
theoretical foundations of SAR processing is not in- 
cluded here; however, there are numerous excellent 
books on the topic (e.g., see [2]). 

In addition to the size and power associated with 
the radar equipment itself, the size and power of the 
computing platform used to perform the SAR process- 
ing can also become significant. Minimizing the power 
of the computing platform used for SAR proces.sing, 
for a given radar system, is the focus of this paper. 

SAR processing can be pajallelized and performed 
on an embedded parallel computing platform. As a 
first step toward deciding how to configure such a 
computing platform, the aggregate required process- 
ing throughput associated with a given set of sys- 
tem parameters can be derived (see [3] for details). 
However, the throughput requirement alone does not 
uniqtiely specify how to configure the embedded com- 
puter. As described in more detail in Section 2, the 
computational strategy assumed here involves using 
the technique of sectione<l fast convolution [5]. The 
choice of the "section size" used in this tecjinique dic- 
tates the relative efficiency of the processors used and 
the amount of memory required. In general, a large 
section size implies better computational efficiency at 
the expense of requiring more memory. To fiirther 
complicate the issue, there are practical constraints 
on how the embedded computer Cim be configured. 
Specifically, the number of processors and amount of 

ing combinations of different types of daughtercards. 
In this paper, two types of daughtercards are assrmied 
to be avEulable: one that has six processors and a total 
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of 32MB of memory and one that has two processors 
and a total of 64MB of memory. 

The proposed formulation involves the deriva- 
tion of a parameterized objective fimction that de- 
fines the power consumption of the embedded com- 
puter. This objective fiinction depends on radar- 
dependent parameters, application-dependent param- 
eters, processor-dependent parameters, a software- 
dependent parameter, and configuration-dependent 
paj-ameters (i.e., the number of daughtercards of 
each type). For a fixed set of radar-, application-, 
and processor-dependent parameters, values of the 
software- and configuration-dependent parameters are 
determined that minimize the derived objective func- 
tion (i.e., the consumed power of the embedded com- 
puter). 

The rest of the paper is organized in the follow- 
ing manner. In Section 2, an overview of the basic 
computational strategy is provided and mathematical 
relationships among the underlying parameters are de- 
rived. Based on these mathematical relationships, the 
proposed optimization problem is formulated in Sec- 
tion 3. A solution technique for the proposed opti- 
mization problem and numerical studies are included 
in Section 4 to illustrate the utility of the proposed 
approach. 

2    COMPUTATIONAL FRAMEWORK 

The basic computational framework assumed here 
is the same as that described in [3]. The description 
given here is an overview; for more details refer to [3]. 

Processors are divided into range and azimuth pro- 
cessors. That is, every processor is dedicated exclu- 
sively to the processing of data either in the range or 
azimuth direction. The range direction is perpendic- 
ular to the line of fiight and the azimuth direction is 
parallel to the line of fiight. 

After radar returns have been sampled and con- 
verted to digital signals, samples are typically read 
into memory at a rate of 5-50 Msamples/s [3]. By 
visualizing memory as a 2-dimensional grid, a row 
of memory contfdns the returns from a single radar 
pulse, whereas a column contains returns of different 
pulses fi-om the same range. Memory is therefore se- 
quentially filled a row at a time. When a suflScient 
number of rows have been filled, this data is sent to 
a range processor. These blocks of data are sent to 
the range processors in a round-robin fashion. Af- 
ter a number of rajige processors have processed data, 
the conglomerate block of data is "comer-turned," or 
matrix-transposed, and then sent to the azimuth pro- 
cessors. Note that the number of range and azimuth 
processors need not be the same. The matrix transpo- 

sition of the data dictates that the azimuth processors 
receive the range-processed rows as columns and the 
unprocessed columns of the azimuth direction as rows. 

Processing of the samples in the range direction pri- 
marily involves convolving the data with a reference 
kernel. The most eflScient method of performing this 
convolution is with the use of FFTs, which is known 
as a fast convolution [5, 7]. It is assumed that the en- 
tire vector of range samples for a given pulse return is 
processed as a single section of data. 

The azimuth processors perform similar operations 
on the data as the range processors (i.e., fast convo- 
lution) but with one important difference: the length 
of the data stream in the azimuth direction is indef- 
inite whereas in the range direction it is of a fixed 
length. Therefore the data cannot be convolved as a 
single entity in the azimuth dimension. Sectioned fast 
convolution [5] provides a method for processing data 
streams of indefinite length. For such a data stream, 
the data is divided into sections of arbitrary length. 
A section is then convolved with the prestored kernel 
as in the case of a regular fast convolution. However, 
overlapping the sections by an amount equal to the 
kernel size and performing fast convolutions on each 
overlapped section yields the same result as if the en- 
tire data stream were convolved at once. But there 
is a price to be paid in computational efficiency for 
using this method. A portion (of length equal to the 
kernel size) of each convolution resultant must be dis- 
carded. Therefore, computational efficiency decreases 
as the ratio of the section of new data to the kernel 
size decreases. 

Besides memory, another limiting factor to the size 
of the new data to be convolved is the 0{NlgN) time 
complexity of the standard FPT algorithm. An impor- 
tant objective is to balance computational efficiency 
with memory requirements. For instance, selecting a 
section size that maximizes computational efficiency 
alone, without regard for concomit£int memory re- 
quirements, may be imfavorable due to high power 
consumption of the required memory. Accounting for 
this tradeoff is an important aspect of the model pre- 
sented in this section. 

A fast convolution consists of an iV-point FFT, N 
complex multiply operations, and an N^-point inverse- 
FFT, where N is the number of data points to be pro- 
cessed, including any overlap. The complexity of this 
computational load is therefore L = 0{NlgN + N). 
The exax:t number of floating point operations gen- 
erally depends on processor- and implementation- 
specific details. For the purposes of this paper, 
SHARC processors are assumed, for which the exact 
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number of floating point operations is given by [3|: 

L = IONIAN+ &N. 

The computational load per sample is obtained by di- 
viding L by the number of new data points processed, 
whidi reflects the efficiency of the calculation. For 
range processing this load per sample, (f>r, due to the 
fast convolution is given by 

^ lOFrlgFr+6Fr 

where F^ is the FFT size for the range and Sr is the 
number of points in the range to be processed. These 
two values can differ because of the stipulation in the 
FFT algorithm that requires the FFT size to be a 
power of two (i.e., F, = 2"=). Although this implies 
some inefficiency, it is usually still faster than using 
a direct convolution algorithm based on the exact se- 
quence length. 

The number of range points Sr is equal to the range 
swath R, divided by the desired resolution S (this is an 
intuitive result based on the physical interpretations 
of R, and <5). Using this expression, the equation for 
0r becomes 

,       SFr{6 + WlsFr) 

R. 

Similarly, the azimuth processing load per sample 
due to the fast convolution is given by 

,       F.(6+L01gF„l 

where F^ is the azimuth FFT size and Sa is the section 
length. It should be noted that for both range and 
azimuth processing, the reference kernels are prestored 
and dependent only upon physical parameters of the 
system. 

To compute the number of processors required for 
both range and azimuth processing, the total com- 
putational load must be computed. The fast con- 
volution comprises the majority of the load. How- 
ever, several other operations are also involved, in- 
cluding fix-to-float conversion, complex signal forma- 
tion, motion compensation, magnituding, and the ma- 
trix transpose already mentioned [3]. It is important 
to realize that different operations can take different 
amounts of time, even if they are considered to be 
a "single floating point operation." Therefore, calcu- 
lating the total computational load requirement per 
data sample involves dividing the number of real op- 
erations per sample of each type by their respective 
tested throughputs for a given type of processor. This 

value multiplied by the sample rate yields the total 
number of processors required. 

Range and azimuth processing have unique load re- 
quirements in addition to the fast convolution load and 
are noted by the constants a^ and «„, respectively. 
The re<juired number of range processors is then de- 
fined by 

P. = Q(a. + ^), (1) 

where Q is the sample rate and 7 is the throughput 
in Mflops for a fast convolution based on the assumed 
processor type used. Similarly, the number of azimuth 
processors required is given by 

P. = Q[cLa + —). (2) 

the following equation [3]: 

where v is the velocity of the platform. If this expres- 
sion is substituted for Q and the expressions for 4>r 
and 0o are also applied, then Eqs. (1) and (2) become 

_       v((,SFr + a^iR. + lOSF^ Ig FA 

_„fl.(a,-l-M^^ 

The total memory required for range processing is 
a product of the number of range processors, P,,, and 
the number of range samples, Sr- This value repre- 
sents the number of complex range samples that are 
stored in memory at a given instant, each complex 
sample consisting of 16 bytes. Therefore the total 
range memory required is 

Mr = 16PrSr, 

or equivalently, 

16R,v{6SFr + Cr-yR, + lOSFr Ig Fr) 

Azimuth memory needs dominate total system 
memory, requiring a double-buffer (for the matrix 
transpose operation) and an output image buffer, both 
of size Sr{Sa + Ka), where K^ denotes the length of 
the azimuth reference kernel. The double-buffer must 
store complex values; the output image buffer stores 
reals. The total azimuth memory requirement in bytes 
is expressed as 

Ma = 10Sr(Sa + Ka). (.. 
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The VEilue of Ka can be expressed in terms of basic 
parameters of the rsidar. Let A be the wavelength of 
the radar. The value for Ka is derived in [3] to be: 

Ail 

Substituting this expression and Sr = Ra/^ into 
Eq. (7) yields 

3    FORMULATION OP AN OPTIMAL CONPIGU- 

RATiON PROBLEM 

The final equations derived above for P^, Pa, Mr, 
I by Eqs. (3), (4), (6), and (8), depend 

on many different types of basic system parameters. 
These basic parameters can be divided into four major 
categories: 

• radar-dependent parameters:    R  (range),   Ra 
(range swath), and A (wavelength); 

• application-dependent parameters:   S  (desired 
resolution) and v (platform velocity); 

• processor-dependent parameters: a^, a,,, and 7; 
and 

• software-dependent parameter: 5a. 

Prom Eqs. (3), (4), (6), and (8), it appears that there 
is also a dependence on the parameters JV (range FFT 
size) and Fa (azimuth FFT size). However, recall that 
Fr and Fa are functions of Sr and Sa + Ka, respec- 
tively, and Sr and Ka can both be expressed in terms 
of basic radar- and application-dependent parameters. 

For the purposes of this section, denote the total 
processor requirement {Pr + Pa) and the total mem- 
ory requirement (Mr-f Ma) as P and M. To formulate 
an optimal configuration problem, it is assumed that 
all radar-, application-, and processor-dependent pa- 
rameters axe specified, and Sa is to be determined. 
To emphasize this dependence solely on the parsime- 
ter Sa, P and M are denoted by P{Sa) and M{Sa). 
The question that naturally arises is how to optimally 
choose the value of Sa? More fundamentally, how does 
the value of Sa affect the resulting configuration of the 
computing platform and its value of consumed power? 
Recall that the desired objective is to minimize the to- 
tal power consumption of the computing platform. 

A possible (yet unrealistic) approach would be to 
model consumed power of the computing platform as 

KP{Sa)+l3MiSa), 

where K and (3 are constants that represent power re- 
quirements on a per processor and per byte of memory 
basis, respectively. Determining a value of Sa, say S*, 
which minimizes this function could be used to define 
an optimal configuration - i.e., a configuration that 
has P(Sa) processors and M{S*) bytes of memory. 

Modeling total consumed power as described above 
is unrealistic because it allows configurations to have 
arbitrary numbers of processors and amounts of mem- 
ory. This would require, in general, that such a config- 
uration be realized at the chip-level, i.e., customized 
boards may have to be developed to support the de- 
rived optimal configurations. 

In reality, it is more practical to constrsdn the set of 
configurations to those that are realizable using com- 
mercially available boards that contain differing num- 
bers of processors and amounts of memory. For this 
study, the computing platform is assumed to be based 
on a Mercury Race System that is configurable using 
a combination of two possible types of daughtercards: 
(1) the S2T16B, which has a total of six SHARC pro- 
cessors and 32MB of memory and (2) the S1D64B, 
which has a toted of two SHARC processors and 64MB 
of memory. Each of these card types has a correspond- 
ing maximum power consumption rating: the type 1 
card is rated at 12.2 watts and the type 2 card is rated 
at 9.6 watts [6]. Under this framework, the total power 
consumption is modeled based on the mimber of cards 
of each type utilized. 

Let Ci and C2 denote the niunber of type 1 and 
type 2 cards utilized, respectively. Thus, the function 
for total consumed power, denoted as W, is defined as 

W^=12.2Ci-|-9.6C2. (9) 

Next, two required constraint equations naturally fol- 
low based on the values of P(SQ) and M{Sa)- 

6C1 + 2C2 > PiSa) (10) 

32Ci+64C2>M(Sa). (11) 

These constraint equations insme that the total num- 
ber of processors in the configuration is no less than 
the total number of required processors eind the total 
amount of memory in the configuration is no less than 
the total amount of memory required. In this frame- 
work, values for the paxameters Ci and C2 must be 
optimized (in addition to the value of the parameter 
Sa)- Although the parameter Sa does not explicitly 
appear in the objective function that is to be mini- 
mized, i.e., W, its effect is implicit through the con- 
straint equations. 

To summarize, the proposed optimization problem 
is stated as follows:   find nonnegative integer values 
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for Ci, C2, and Sa such that W is minimized and 
constraint Eqs. (10) and (11) are satisfied. 

4    SOLVING   THE   OPTIMAL   CONFIGURATION 
PROBLEM 

4.1    Proposed Solution Technique 

As formulated, the proposed optimization problem 
can be classified as an integer programming problem. 
Solving such optimization problems can be computa- 
tionally intensive (see [4] for a summary on integer 
programming techniques). 

Instead of directly applying an integer program- 
ming technique, an alternative approach is proposed 
here for solving the formulated optimization problem. 
Notice that the objective and the constraint equations 
are nearly continuous functions of the optimization 
variables Ci, C2, and Sa- If the objective and con- 
straints were continuous, then nonlinear programming 
techniques (e.g., see [1]) could be applied. Such ap- 
proaches often have fast convergence properties. The 
only discontinuous portion in the formulation is due to 
the definition of F^, which is a discontinuous function 
of Sa. (Recall that F„ is defined as the smallest inte- 
ger power of two that is greater than Sa + K^.) This 
discontinuous function prevents the direct application 
of nonlinear programming. However, by selecting F„ 
as an integer power of two, and adding a constraint to 
ensure that Ka -f Sa is no greater than this selected 
value, the discontinuity can be removed. Thus, in ad- 
dition to the constraints given by Eqs. (10) and (11), 
the following constraint equation is added 

Ka-\-Sa<Fa, (12) 

where the value of F„ = 2* > Ka is fixed (the 
value of Ka is known based on the values of the 
specified basic parameters). Thus, to ensure opti- 
mality, it may be necessary to solve several con- 
strained optimizations based on different feasible val- 
ues for Fa. In practice, however, only a few val- 
ues for Fa need to be tried: from the smallest 
feasible value up to the point at which the op- 
timal value of Sa is such that Ka + Sa < Fa 
(i.e., the constraint becomes inactive). 

4-2    Numerical Studies 

The solution technique proposed in the previous 
subsection is applied to find optimal configurations 
based on four different sets of application-dependent 
parameters: {l)6 = l,v = 300; {2)6=l,v = 200; (3) 
6 = 1.5, V = 300; and (4) 8 = 1.5, v = 200 (the units 
for 6 and v are meters and meters/s, respectively). For 

all four cases considered, the radar-dependent parame- 
ters and processor-dependent parameters were fixed at 
the following values: R = 10^, R.^=2x 10*, A = 0.03, 
oir = 0.3528, aa = 0.9068, and 7 = 94. These values 
are derived in [3] based on a Mercury Rac-,e System 
configured using SPARC processors. 

Intuitively, case 1 represents the most computation- 
ally demanding scenario of the four cases considered 
- it has the largest platform velocity and the finest 
desired SAR resolution. Case 4, on the other hand, 
represents the other end of the spectrum ~ it is the 
scenario with the smallest velocity and coarsest reso- 
lution. Thus, it would be expected that case 1 have 
the highest power consumption requirement and case 
4 the lowest - this intuition is confirmed in the numer- 
ical studies described next. 

The formulated optimization problem was solved 
using a routine from the Optimization Toolbox of 
MATLAB called constr. This routine was executed 
interactively (in MATLAB's command line mode) on 
a Sun SparcStation, and the response time for solving 
each optimization was almost immediate (less that one 
second). 

To illustrate the advantage associated with allowing 
configurations to have two types of cards (i.e., hetero- 
geneous configurations), optimizations were also con- 
ducted in which only one card type is allowed (i.e., ho- 
mogeneous configurations). Mathematicjilly, finding 
an optimal homogeneous configuration corresponds to 
setting the value of either Ci or C2 to zero and solving 
the resulting optimization. Tables 1, 2, and 3 sum- 
marize the results of the numerical studies that were 
conducted. Table 1 shows the results for the optimal 
heterogeneous configurations, in which both types of 
cards are allowed (i.e., solving the optimization as de- 
scribed in the previous subsection). Tables 2 and 3 
show the results of optimal homogeneous configura- 
tions, in which C2 and Ci, respectively, were defined 
to be zero in the formulation. In all tables, the optimal 
values of Sa, Ci, C2, and Fa as well as the correspond- 
ing optimal value of the consumed power are tabulated 
for each of the four cases considered. 

Notice that optimal values of Sa and Fa given in 
Table 2 are substantially less than those in Table 3. 
This is logical considering that the memory to pro- 
cessor ratio for the type 2 card is much higher than 
that for the type 1 card, and memory requirements 
grow linearly with the value of Sa (refer to Eq. (7)). 
In reality, of course, a fractional number of cards can- 
not be installed in an actual configuration. Thus, the 
values for Ci and C2 would need to be rounded up to 
the nearest integers so that the processor and memory 
constraints are satisfied. 
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5    CONCLUSIONS 

Table   1:      Optimal   Heterogeneous   Configurations: 
Type 1 and 2 Cards 

case no. 
iS:v) 

Sa Ci C2 F^ Power 
(in watts) 

1 
(1:300) 

548 4.8 4.2 2048 94.7 

2 
(1 : 200) 

548 2.1 5.3 2048 77.3 

3 
(1.5 :300) 

357 1.5 1.4 1024 31.9 

4 
(1.5 : 200) 

357 0.7 1.8 1024 26.0 

Table 2: Optimal Homogeneous Configurations: Type 
1 Cards Only 

case no. 
{S:v) 

5„ Ci C2 Fa Power 
(in watts) 

1 
(1 : 300) 

259 11.0 0 2048 134.4 

2 
(1: 200) 

175 10.5 0 2048 127.9 

3 
(1.5 : 300) 

174 3.5 0 1024 42.8 

4 
(1.5 : 200) 

118 3.3 0 1024 39.9 

Table 3: Optimal Homogeneous Configurations: Type 
2 Cards Only 

case no. 
(S-.v) 

Sa Ci C2 Fa Power 
(in watts) 

1 
(1 : 300) 

2154 0 11.4 4096 109.7 

2 
(1 : 200) 

1559 0 9.6 4096 91.8 

3 
(1.5 : 300) 

1342 0 4.2 2048 40.2 

4 
(1.5 : 200) 

975 0 3.4 2048 32.9 

A formal approach for optimally configuring an em- 
bedded computing platform for SAR processing was 
introduced. The formulation allows the platform to be 
configured using a combination of two types of cards. 
The variables that are optimized include the number 
of cards of each type and an FFT section size param- 
eter. The advantage - in terms of minimizing con- 
sumed power - of optimally utilizing two card types 
(instead of restricting configurations to have only one 
card type) was illustrated through numerical stud- 
ies. Also, an intuitive correspondence between opti- 
mal power consumption requirement and application- 
dependent pareimeters (i.e., SAR image resolution and 
platform velocity) was illustrated. 
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Abstract Embedded systems often must adhere to strict size, weight, and 
power (SWAP) constraints and yet provide tremendous computational 
throughput. Increasing the difficulty of this challenge, there is a trend to utilize 
commercial-off-the-shelf (COTS) components in the design of such systems to 
reduce both total cost and time to market. Employment of COTS components 
also promotes standardization and permits a more generalized approach to 
system evaluation and design than do systems designed at the application- 
specific-integrated-circuit (ASIC) level. The computationally intensive 
application of synthetic aperture radar (SAR.) is by nature a high-performance 
embedded application that lends itself to parallelization. A system performance 
model, in the context of SWAP, is developed based on mathematical 
programming. This work proposes an optimization technique using a 
combination of constrained nonlinear and integer programming. 

1      Introduction 

This work focuses on modeling and optimizing the processor-memory relationships of 
an embedded system for synthetic ^erture radar (SAR) processing. The hardware 
computing platform of investigation is one constructed with commercial off-the-shelf 
(COTS) components that are based on daughtercards and the compute-node concept. 
A daughtercard consists of one or more compute nodes, where a compute node is 
defined as an entity consisting of one or more processors, a block of shared memory, 
and the requisite glue logic. Within the framework of the models developed, 
optimization is performed on parameters such as the convolution section size and the 
choice and number of daughtercards comprising the system. 

Size, weight, and power (SWAP) constraints often motivate the maximization of 
performance density for a given SAR system, especially in the case of unmanned 
aerial vehicles (UAVs) or satellites, which often accommodate SAR systems. SAR in 
itself is an ^proach to densifying a radar system by substituting a large degree of data 
postprocessing for radar equipment with prohibitively high size, wei^t, and power 
characteristics. Minimizing the power consumption of the compute platform used for 
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SARprocessing is the fundamental objective in this research (although with sufficient 
parameter guidelines, size and weight could also be minimized using the same 
^proach). 

2      Fundamentals of SAR Processing 

The specific mode of SAR investigated in this research is known as strlpmapplng. In 
stripm^ping, successive radar pulses are transmitted and returned in the range 
dimension, which is orthogonal to the line of flight. Each received series of pulses 
from an individual transmitted pulse is then convolved with a reference kernel to 
achieve range compression. The entire range dimension is processed at once in this 
way. Detailed coverage of SAR and SAR processing is available in such works as [1, 
2]. 

To create a two-dimensional SAR image, processing in the azimuth dimension is 
also necessary. The azimuth dimension is parallel to the line of flight and is 
conceptually infinite in length. Thus, processing of the entire azimuth vector, created 
from stacked range-processed vectors, is infeasible. To counter this problem, 
sectioned convolution is employed. 

Sectioned convolution extracts a piece (or section) of the azimuth vector, 
convolves it with a reference kernel as in the range dimension, and then discards a 
portion of the result equal to the length of ^e reference kernel. Successi^ly 
processed azimuth sections are then overl^ped (with overlaps equal to the discarded 
kernel length) to form continuous vectors in the azimuth dimension. As is intuitive, a 
large azimuth section length requires more memory than a small section. 
Correspondingly, small azimuth sections require more total processing than do large 
sections because the percentage of new data processed, which is not discarded, is low 
(the size of the reference kernel being fixed). 

A key point in this work is the exploitation of the section size and the concomitant 
processor-memory tradeoff [3]. Different daughtercards are better suited for different 
scenarios depending on the memory per processor ratio associated with the 
daughtercard, which is largely dependent on the chosen section size. The 
combination of the choices for the section size and number and types of daughtercards 
employed greatly affects the overall performance and associated power consumption 
of the computational platform. 

3      Optimization Models 

Two models are presented in this work, which address the problem of determining the 
optimal parameter values for configuring the system. Both methods are based on 
mathematical programming, which provides a method of formulating an optimization 
problem given an objective and set of constraints [4, 5]. This work proposes 
optimization techniques using a combination of constrained nonlinear and integer 
programming. 
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The first model is based on the assumption of an ideal shared-memory system. It 
treats all the memory contributed by individual daughtercards as a conglomerate 
block, equally accessible by all processors located on all daughtercards. For a system 
that is tightly predicated on the compute node with relatively high penalties for inter- 
compute-node communication, this is an inaccurate oversimplification. However, it is 
useful to initially investigate the optimization of the SAR system based on such an 
assumption because it provides clear insight into the interrelationships between 
variables and the effects of perturbation of other external parameters. In addition, 
without constraints on the amount of local memory available to a processor, the ideal 
memory-per-process or ratio can be derived from the optimization solution. 

The second model removes the assumption of global shared memory and purposes 
to address system configuration more realistically. With this goal comes an increase 
in the complexity of the optimization formulation. The constraint set is modified to 
ensure only local memory access by processors. To accomplish this optimization, a 
mudi higher degree of integer programming is required than in the first model, 
entailing greater computational intensity to perform the optimization. The benefits of 
this second model include solutions that consist of a complete specification of how 
system resources are to be utilized, whereas the first model only specifies which 
resources are to be employed. 

Parallelization of SAR processing involves the allocation of system resources for 
either range or azimuth processing [6]. In the first model, range and azimuth 
processors and memory are treated as aggregate requirements that somehow must be 
met with an ^propriate number of daughtercards of each type. The second model, 
however, specifies how many processors and how much memory on each compute 
node per daughtercard is allocated for each function to prevent remote memory access 
during computation. Note that a single compute node can perform both range and 
azimuth processing, although each processor within a compute node must be 
dedicated to a single task. 

Numerical Studies 

Test data is based on the availability of two different daughtercards. The first is 
comprised of two compute nodes. Each compute node on this daughtercard consists 
of three processors and a shared memory block of 16 MB. The second daughtercard 
consists of a single compute node with two processors and 64 MB of memory. The 
first daughtercard consumes 12.2 watts of power and the second 9.6 watts. 
Throughput data for the significant operations involved in SAR processing is based 
on SHARC processors [7]. 

MATLAB's constr function in the Optimization Toolbox was used to solve the 
nonlinear constrained programming problem presented by both models. The 
nonlinear nature of the problem results from the equations that express the required 
system memory and number of processors, which are derived in [8]. The constr 
implements a Sequential Quadratic Programming algorithm [9]. Integer 
programming, the need for which results from the inherently discrete number of 
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processors per compute node and total compute nodes in a system, is implemented by 
multiple optimizations over the feasible discrete permutations. 

Figs. 1 through 3 illustrate the result of solving the optimization problem of me of 
the models many times across a range of values for different platform \«locities and 
desired resolutions. In eadi case, the platform velocity ranges from 50-400 m/s and 
the resolution frwa 0.5-2.0 m. 

The utility of optimization of the section size is demonstrated by comparison of 
results produced by a heuristic used to determine section size, which defines the 
section size to be equal to the kernel size. This section size definition and resultant 
system configuration is designated as nominal. This wot finds that the nominal 
section size, ahhough relatively efficient in processing, is too large fw most scenarios 
because of the excessi^« memory requirements involved. The optimizations 
performed show that forcing relatively inefficient processing with an associated 
reduction in memory requirements is optimal if power is to be minimized. C^timal 
section sizes thus often are found to be only abaction of the kernel size, ^itailingthe 
processing of more old data that is to be discarded dian new data. 

400     2 

Fig. L    Ratio of po^A^r consumption of the nominal section size to the oplimai sec[ion size. 
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400 

velocity(m/^) 

Fig. 2.     Power consumption of the CN-constrained model. 

Figure 1 shows the surface plot of the ratio of results obtained by employment of the 
nominal section size to the optimized section size of the first model. As would be 
expected, the optimized section size always results in equal or lower power 
consumption than does the nominal section size. The optimized section size adjusts 
to take advantage of unutilized processor and/or memory resources resulting from 
changes in system requirements produced by changes in the velocity (axis labeled v) 
and/or resolution (axis labeled d). 

In both models, higher velocities and/or finer resolutions require more 
daughtercards and thus more power. All other radar parameters such as wavelength, 
range, range swath, and pulse width remain fixed at values representative of a real 
system [6]. These trends are illustrated in Fig. 2, which represents the optimal power 
consumption associated with the second model. 

Fig. 3 displays the daughtercard configurations necessary for the optimal power 
values represented in Fig. 2. A configuration is defined as the processor and memory 
allocation (for range or azimuth processing) per compute node for a particular 
daughtercard type. An optimal system configuration consists of one or two 
daughtercard configurations. The two configurations are denoted as X and F, with the 
subscipts 7", r, and a designating the daughtercard type (7), number of range 
processors per compute node of that type daughtercard (r), and the number of azimuth 
processors {a). 



 

 

 

53

 



 

 

 

54

Acknowledgements 

This work was supported by Rome Laboratory under Grant No. F30602-96-1-0098 
and Defense Advanced Research Projects Agency (DARPA) under Contract No. 
F30602-97-2-0297. 

References 

1. J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar: ^^tem^ and Signal 
/'TOcejjr;?^. John Wiley & Sons. New York. NY. 1991. 

2. W. G. Carrara. R. S. Goodman, and R. M. Majewski. Spotlight Synthetic Aperture Radar: 
Signal Proce^^ing Algorithms, Artech House, Boston, MA, 1995. 

3. J. T.Muehringand J. K. Antonio.''Optimal Configuraion of Parallel Embedded Systems for 
Synthetic Aperture Radar.^' Proceeding:^ of the /^ International Conference on Signal 
Processing S: Applied Technology, October 1996. pp. 1189-1194. 

4. F. S. Hillier and G. J. Lieberman. Introduction to Operations Research, Sixth Edition. 
McGraw-Hill. New York. NY. 1995. 

5. M. S. Bazaraa. H. D. Sherali. and C M. Shetty. Nonlinear Programming: Theory and 
A Igorithms, Second Edition. John Wiley & Sons. New York. NY. 1993. 

6. T. Einstein. ''Realtime Synthetic Aperture Radar Processing on the RACE Multicomputer.^' 
ApplicationNote203.0. Mercury Computing Systems. Inc.. Chelmsford. MA. 1996. 

7. "SHARC DSP Compute Nodes (3.3-Volt)." Mercuiy Computing Systems. Inc.. Chelmsford. 
MA. Sept. 1995. 

8. J. T. Muehring. Optimal Configuration of a Parallel Embedded System for Synthetic 
Aperture Radar Processing, M. S. Thesis. Texas Tech University. 1997 
(http://hpcl.cs.ttu.edu/darpa/opt_conii g/thesis. pdf) 

9.    P. E. Gill. W. Murray, and M. H. Wright. Practical Optimization, Academic Press. 
London. 1981. 



 

 

 

55

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix C: Jack M. West and John K. Antonio, “Simulation of the Communication 
Time for a Space-Time Adaptive Processing Algorithm on a Parallel Embedded System,” 
Proceedings of the International Workshop on Embedded HPC Systems and Applications 
(EHPC ‘98), in Lecture Notes in Computer Science 1388: Parallel and Distributed 
Processing, edited by Jose Rolim, sponsor: IEEE Computer Society, Orlando, FL, USA, 
Apr. 1998, pp. 979-986. 
 



 

 

 

56

 

Siiniilatioii of the Comtnuiiicatioii Time for a Space-Time 
Adaptive Processing Algorithm on a Parallel Embedded 

System 

Jack M. West and John K. Antonio 

Department of Computer Science, P.O. Box 43104, Texas Tech University, Lubbock^TX 
79409-3104 

{west, antonio}@ttu.edu 

Extended Abstract 

The focus of this work involves the investigation of parallelization and perfonnance 
improvement for a class of radar signal processing techniques known as space-time 
ad^tive processing (STAP). STAP refers to an extension of ad^tive antenna signal 
processing methods that operate on a set of radar returns gathered from multiple 
elements of an antenna array over a specified time interval. Because the signal 
returns are composed of range, pulse, and antenna-element samples, a three- 
dimensional (3-D) cube naturally represents STAP data. Typical STAP data cube 
processing requirements range from 10-100 giga floating point operations per second 
(Gflops). Imposed real-time deadlines for STAP ^plications restricts processing to 
parallel computers composed of numerous interconriected compute nodes (CNs). A 
CNhas one or more processors connected to ablock of shared memory. 

Developing a solution to any problem on a parallel system is gerierally not a trivial 
task. The overall performance of many parallel systems is highly dependent upon 
network contention. In general, the moping of data and the scheduling of 
communications impacts rietwork contention of parallel architectures. The primary 
goals of many ^plications implemented on parallel architectures are to reduce 
latency and minimize interprocess or communication time (IPC) while maximizing 
througlput. It is indeed necessary to accomplish these objectives in STAP processing 
environments. In most STAP implementations, there are three phases of 
computations, one for each dimension of the data cube (i.e., range, pulse, and 
channel). To reduce computational latency, the processing at each phase must be 
distributed over multiple CNs using a single program multiple data (SPMD) 
^proach. Additionally, prior to each processing phase, the data set must be 
partitioned in a fashion that attempts to equally distribute the computational load over 
the available CNs. Because each of the three phases process a different dimension of 
the data cube, the data must be redistributed to form contiguous vectors of the next 
dimension prior to the next processing phase. This redistribution of data or 
distributed ''comer-turn" requires IPC. Minimizing the time required for 
interprocess or communication helps maximize STAP processing efficiency. 

Driven by the need to solve complex real-time applications that require tremendous 
computational   bandwidths   such   as   STAP   algorithms,   commercial-off-the-shelf 
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(COTS) embedded hi^-perfomiance computing systems that emphasize upward 
scalabihty have emerged in the parallel processing environment. In a message 
passing parallel system, CNs are connected with each other via a common data 
communication fabric or intercoruiection rietwork. For the purposes of discussion and 
illustration, assume that a crossbar with six bidirectional channels is the building 
block for the intercoruiection network. Each of the six input/output channels is 
bidirectional, but may only be driven in one direction at a time. The versatility of the 
six-port crossbar allows for the interconnect to be configured into a number of 
different network topologies, including two-dimensional (2-D) and 3-D meshes, 2-D 
and 3-D rings, grids, and Clos networks. However, the most common configuration is 
a fat-tree, where the crossbars are connected in a parent-child fashion. In a fat-tree 
configuration, which is the configuration assumed in this p^er, each crossbar has two 
parent ports and four child ports. The fat-tree architecture helps alleviate the problem 
of communication bottlenecks at hi^ levels of the tree (present in conventional tree 
architectures) by irjcreasing the number of effective parallel paths between CNs. 
Unfortunately, the addition of multiple paths between CNs increases the complexity 
of the communication pattern in ^plications such as STAP that involve data 
redistribution phases. 

Additional complexity emerges when each CN is composed of more than one 
processor or compute element (CE) configured with the shared-memory address space 
of the CN. In a system with one CE per CN, flie communication pattern during 
distributed corrier-turn phases is very regular and we 11-understood (i.e., a matrix 
transpose operation implemented in parallel). However, the overall complexity of 
both the moping and scheduling of communications irjcreases in systems where the 
CNs contain more than one CE, for two reasons. First, the communication pattern can 
be less regular. Second, the message sizes are not uniform. 

Two m^or challenges of implementing STAP algorithms on embedded high- 
performance systems are determining the best method for distributing the 3-D data set 
across CNs (i.e., the mapping strategy) and the scheduling of communication prior to 
each phase of computation. At each of the three phases of processing, data access is 
either vector-oriented along a data cube dimension or a plane-oriented combination of 
two data cube dimensions. During the processing at each phase, the contiguous 
vectors along the dimension of interest are distributed among the CNs for processing 
in parallel. Additionally, each CE may be responsible for processing one or more 
vectors of data during each phase. Before processing of the next phase can take place, 
the data must be redistributed among the available CNs to form contiguous vectors of 
the next dimension. Determining the optimal schedule of datatransfers during phases 
of data repartitioning on a parallel system is a formidable task. The combination of 
these two factors, data moping and communication scheduling, provides the key 
motivation for this work. 

One approach to data set distribution in STAP ^plications is to partition the data 
cube into sub-cube bars (see Fig. 1). Each sub-cube bar is composed of partial data 
samples from two dimensions, while preserving one whole dimension of the data- 
cube. After performing the necessary computations on the current whole dimension, 
the data vectors must be redistributed to form contiguous sub-cube bars of the next 
dimension to be processed. By implementing a sub-cube bar partitioning scheme, 
IPC between processing stages is isolated to clusters of CNs and not the entire system 
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(i.e., the required data exchanges occur only between CNs in the same logical row or 
column). 

To illustrate the impact of moping, consider the two examples shown in Fig. 2 and 
Fig. 3. For these two examples, assume that the parallel system is composed of four 
CNs, with each having three CEs, and connected via one six-port crossbar (see Fig 4). 
Additionally, the number on each sub-cube bar indicates the processor to which the 
sub-cube bar is initially distributed for processing. Fig. 2 illustrates a moping 
scheme where the sub-cube bars are raster-numbered along the pulse dimension. In 
contrast, the sub-cube bars are raster-numbered along the channel dimension in Fig. 3. 
As illustrated in the two examples, the initial mapping of the data prior to pulse 
compression affects the number of required communications during the data 
redistribution phase prior to Doppler filtering. In the case where the data cube is 
raster-numbered along the pulse dimension, six messages, totaling 20 units in size, 
must be transferred through the interconnection network. By implementing the 
moping scheme in Fig. 3, the number of required data transfers increases to twelve, 
while the total message size expands to 36 units. For this small example, the initial 
moping of the sub-cube bars greatly affects the communication overhead that occurs 
during phases of datarepartitioning. 

To illustrate the impact of scheduling communications during data repartitioning 
phases, consider the problem depicted in Fig. 5, which is the same problem as shown 
in Fig. 3. The left-hand portion of the figure shows the current location of the STAP 
data cube on the given processors after pulse compression. The data cube on the 
right-hand side of the figure illustrates the sub-cube bars of the data cube after 
repartitioning. The coloring scheme indicates the destination CN of the data for the 
data prior to the next processing phase. If any part of the sub-cube bar is a different 
color than its current processor color in the left-hand data cube, the data must be 
transferred to the conesponding colored destination node. In this example, the 
repartitioning phase involves transferring six data sets through the interconnection 
network. If the six messages were sequentially communicated (i.e., no parallel 
communication) through the network, the completion time {Tc} would be the sum of 
the length of each message, which totals 20 network cycles. If two or more messages 
could be sent through the network concurrently, then the value of Tc would be 
reduced (i.e., below 20). 

Scheduling the communications for each of the six messages through the 
interconnection network greatly affects the overall performance (even for this small 
system consisting of only one crossbar). Fig. 6 shows the six messages, labeled A 
through F, in the outgoing first-in-first-out (FIFO) message queues of the source CNs. 
Each message's destination is indicated by its color code. The number in parenthesis 
by each message label represents the relative size of the message. The minimal 
achievable communication time is dependent upon the CN with the largest 
communication time of all outgoing and incoming messages. For this example, the 
minimum possible communication time is the sum of all outgoing and incoming 
messages on the CNs having two messages, which equals fourteen message units. 
The actual communication time, Tc, that would result from this example with the 
given message queue orderings (i.e., schedule) is 17 units. However, changing the 
ordering of the messages in the outgoing queues will yield an optimal schedule of 
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messages. The message queues in Fig- 7 are identical to those in Fig. 6 except the 
positions of messages C and Fhave been swqjped in the outgoing queue. Swapping 
the ordering of the messages on the green CN allows for an increase in the number of 
messages that can be communicated in parallel. For this new ordering of queued 
messages, the actual completion time achieves the optimal completion time of 
fourteen units. The purpose of this example is to illustrate that the order (i.e., the 
schedule) in which the messages are queued for transmission can impact how much 
(if any) concurrent communication can occur. The method used to decompose and 
m^ the data onto the CNs will also impact the potential for concurrent 
communication. 

The current research involves the design and implementation of a network 
simulator that will model the effects of data moping and communication scheduling 
on the performance of a STAP algorithm on an embedded high-performance 
computing platform. The purpose of the simulator is not to optimally solve the data 
moping and scheduling problems, but to simulate the different data m^pings and 
schedules and resultant performance. Thus, the simulator models the effects 
associated with how the data is m^ped onto CNs, composed of more that one CE, of 
anembeddedparallel system, and how the data transfers are scheduled. 

The network simulator is designed in an object-oriented paradigni and 
implemented in Java using Borland's IBuilder Professional version 1.0. Java was 
chosen over other programming languages because of its added benefits. First, Java 
code is portable. This feature allows the simulator to run on various platfomis 
regardless of the architecture and operating system. Additionally, Java can be used to 
create both ^plications (i.e., a program that executes on a local computer) and 
^plets (i.e., an ^plication that is designed to be transmitted over the Internet and 
executed by a Java-compatible web browser). Third, Java source code is written 
entirely in an object-oriented paradigm, which is well-suited for the simulator's 
design. Fourflij Java provides built-in support for multithreaded programming. 
Finailys Java development tools, like Borland's JBuilder, provide a set of tools in the 
Abstract Window Toolkit (AWT) for visually designing and creating grq^hical user 
interfaces (GUIs) for ^plications or ^plets. 

The simulator's functionality is encompassed by a friendly GUI. The main user 
interface of the simulator provides a facility for the user to enter the corresponding 
values of the three dimensions of a given STAP data cube and the number of CNs to 
allocate to processing the STAP data cube using an element-space post-Doppler 
heuristic and a sub-cube bar partitioning scheme. After providing the problem 
definition infonnation, the user selects an initial moping that includes a set of 
predefined m^pings (e.g., raster-numbering along the pulse dimension, raster- 
numbering along the channel, etc.), a random moping, or a user-definable 
customized moping. Furthennore, the user selects the ordering of the messages in 
the outgoing queues from a predefined set of scheduling algorithms (e.g., short 
messages first, longest messages first, random, custom, etc). After providing the 
necessary input, the network simulator simulates the defined problem and produces 
the timing results from both phases of datarepartitioning. The level of detail that the 
simulator models could be defined as a medium- to fine-grairied simulation of the 
interconnection network. The simulator assumes the rietwork is circuit switched, and 
the contention resolution scheme is based on a port number tie-breaking mechanism 
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Abstract. An inportant consideration in the maximisation of performance in 
parallel processing systems is scheduling the communication of messages 
during phases of data movement to reduce network contention and overall 
communication time. The work presented in this p^er focuses on off-line 
optimisation of message schedules for a class of radar signal processing 
techniques know as space-time ad^tive processing on a parallel embedded 
system. In this worlc. a gene tic-algorithm-based ^proach for optimizing the 
scheduhng of messages is introduced. Prehminary results indicate that the 
proposed genetic approach to message scheduhng can provide significant 
decreases in the communication time. 

Introduction and Background 

For an qjplication on a parallel and embedded system to achieve required 
performance given tight system constraints, it is important to efficiently mqj the tasks 
and/or data of the application onto the processors to the reduce inter-processor 
communication traffic. In addition to mqjping tasks efficiently, it is also important to 
schedule the communication of messages in a manner that minimizes network 
contention so as to achieve the smallest possible communication time. 

Moping and scheduling can both - either independently or in combination - be 
cast as optimization problems, and optimizing mapping and scheduling objectives can 
be critical to the performance of the overall system. For parallel and embedded 
systems, great significance is placed on minimizing execution time (which includes 
both computation and communication components) and/or maximizing throughput. 

The work outlined in this paper involves optimizing the scheduling of messages for 
a class of radar signal processing techniques known as space-time adqjtive processing 
(STAP) on a parallel and embedded system. A genetic algorithm (GA) based 
qjproach for solving the message-scheduling problem for the class of parallel STAP 
algorithms is proposed and preliminary results are provided. The GA-based 
optimization is performed off-line, and the results of this optimization are static 
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Genetic Algorithm Metliodology 

A GA is a population-based model that uses selection and recombination operators to 
generate new sample points in the solution space [3]. A GA encodes a potential 
solution to a specific problem on a chromosome-like data structure and applies 
recombination operators to these structures in a manner that preserves critical 
information. Reproduction opportunities are qjplied in such a way that those 
chromosomes representing a better solution to the target problem are given more 
chances to reproduce than chromosomes with poorer solutions. GAs are a promising 
heuristic qjproach to locating near-optimal solutions in large search spaces [3]. For a 
completediscussionof GAs, the reader is referred to [1,3]. 

Typically, a GA is composed of two main components, which are problem 
dependent: the encoding problem and the evalvation fimction. The encoding problem 
involves generating an encoding scheme to represent the possible solutions to the 
optimization problem, hi this research, a candidate solution (i.e., a chromosome) is 
encoded to represetit valid message schedules for all of the CNs. The eyalvation 
function measures the quality of a particular solution. Each chromosome is associated 
with a fitness value, which in this case is the completion time of the schedule 
represented by the given chromosome. For this research, the smallest fitness value 
represents the better solution. The 'Titness" of a candidate is calculated here based on 
its simulated performance, hi previous work [6, 7], a software simulator was 
developed to model the communication traffic for a set of messages on the Mercury 
RACEway network. The simulation tool is used here to measure the 'Titness" (i.e., the 
completion time) of the schedule of messages represented by each chromosome. 

Chromosomes evolve through successive iterations, called generations. To create 
the next generation, new chromosomes, called offspring, are formed by (a) merging 
two chrcvnosotnes from the current population together using a crossover operator or 
(b) modifying a chromosome using a mutation operator. Crossover, the main genetic 
operator, generates valid offspring by combining features of two parent chromosomes. 
Chromosomes are combined together at a defined crossover rate, which is defined as 
the latio of the number of offspring produced in each generation to the population 
size. Milation, a background operator, produces spontaneous random changes in 
various chromosomes. Mutation serves the critical role of either replacing the 
chromosomes lost from the population during the selection process or introducing 
new chromosomes that were not present in the initial population. The mutation rate 
controls the rate at which new chromosomes are introduced into the population. In 
this pqjer, results are based on the implementation of a position-based crossover 
operator and an insertion mutation operator, refer to [ 1 ] for details. 

Selection is the process of keeping and eliminating chromosomes in the population 
based on their relative quality or fitness, hi most practices, a roulette wheel qjproach, 
either rank-based or value-based, is adopted as the selection procedure, hi a ranked- 
based selection scheme, the population is sorted according to the fitness values. Each 
chromosome is assigned a sector of the roulette wheel based on its ranked-value and 
not the actual fitness value, hi contrast, a value-based selection scheme assigns 
roulette wheel sectors proportional to the fitness value of the chromosomes, hi this 
paper, a ranfced-hased selection scheme is used. Advantages of rank-based fitness 
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assignment is it provides unifonn scaling across chromosomes in the population and 
is less sensitive to probability-based selections, refer to [3] for details. 

4     Numerical Results 

hi the experiments reported in this section, it is assumed that the Mercury 
multicomputer is configured with 32 PowerPC compute nodes. For range processing, 
Doppler filtering, and adaptive weight computation, the 3-D STAP data cube is 
mapped onto the 32 processing elements based on an 8x4 process set (i.e., 8 rows 
and 4 columns), refer to [2, 6]. The strategy implemented for CN assignment in a 
process set is raster-order from left-tonight starting with row one and column one for 
all process sets. (The process sets not only define the allocation of the CNs to the data 
but also the required data transfers during phases of data redistribution.) The STAP 
data cube consists of 240 range bins, 32 pulses, and 16 antenna elements. 

For each genetic-based scenario, 40 random schedules were generated for the 
initial population. The poorest 20 schedules were eliminated from the initial 
population, and the GA population size was kept a constant 20. The recombination 
operators included a position-based crossover algorithm and an insertion mutation 
algorithm. A ranked-based selection scheme was assumed with the angle ratio of 
sectors on the roulette wheel for two adjacently ranked chromosomes to be 1 +1 / P, 
where P is the population size. The stopping criteria were: (1) the number of 
generations reached 500; (2) the current population converged (i.e., all the 
chromosomes have the same fitness value); or (3) the current best solution had not 
improved in the last 150 generations. 

Figure 3 shows the simulated completion time for three genetic-based message 
scheduling scenarios for the data transfers required between range and Doppler 
processing phases. Figure 4 illustrates the simulated completion time for the same 
three genetic-based message scheduling scenarios for the data transfers required 
between Doppler and adaptive weight processing phases, hi the first genetic scenario 
(GA 1), the crossover rate (Pxova) is 20% and the mutation rate (Pmui) is 4%. For GA 
2, Plover is 50% and P^^, is 10%. For GA 3, P^^ver is 90% and P^^, is 50%. Figures 3 
and 4 provide preliminary indication that for a fixed mqjping the genetic-algorithm- 
based heuristic is capable of improving the scheduling of messages, thus providing 
improved performance. All three genetic-based scenarios improve the completion 
time for both communication phases, hi each phase, GA 2 records the best schedule 
of messages (i.e., the smallest completion time). 
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5.    Conclusion 

In conclusion, preliminary data demonstrates that off-line GA-based message 
scheduling optimization can provide improved performance in a parallel system. 
Future work will be conducted to more completely study the effect of changing 
parameters of the GA, including crossover and mutation rates as well as the methods 
used for crossover and mutation. Finally, future studies will be conducted to 
determine the performance improvement between a randomly selected scheduling 
solution and the one determined by the GA. hi Figures 3 and 4, the improvements 
shown are conservative in the sense that the initial generations' performance on the 
plots represents the best of 40 randomly generated chromosomes (i.e., solutions). It 
will be interesting to determine improvements of the GA solutions with respect to the 
''average" and ''worst" randomly generated solutions in the initial population. 
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Computational efficiency is of great significance for liigh-performance 

embedded applications. The work here develops and evaluates a genetic- 

algorithm-based (GA-based) optimization technique for the scheduling of 
messages for a class of parallel embedded signal processing techniques known 

as space-time adaptive processing (STAP). The GA-based optimization is 

performed off-line, resulting in static schedules for the compute nodes of the 

parallel system. These static schedules are utiUzed for the on-line implementa- 

tion of the parallel STAP application. The primary motivation and 

justification for devoting significant off-line effort to solving the formulated 

scheduling problem is the resulting reduction of hardware resources required 

for the actual on-line impleinentation. Numerical studies illustrate that 

reductions in hardware requirements of around 50% can be achieved by 

employing the results of the proposed scheduling techniques. This reduction in 

hardware requirement is of critical importance for STAP, which is typically an 

airborne application in which the size, weight, and power consumption of the 

computational platform are severely constrained.      ( 2{>()2 Kkcvici science ILISAI 

Key Words: embedded processing; genetic algorithms; hardware minimiza- 

tion; mapping; scheduling. 

1. INTRODUCTION 

For an application implemented on a parallel and embedded system to achieve 

required performance, it is important to effectively map the tasks of the application 

onto the processors in a way that reduces the volume of inter-processor 

communication traffic. It is also important to schedule the communication of 

All rights reserved. 
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messages in a manner that minimizes network contention so as to achieve the 
smallest possible communication times. 

Mapping and scheduling can both—either independently or in combination—be 
cast as optimization problems, and optimizing mapping and scheduling objectives 
can be critical to the performance of the overall system. For embedded applications, 
great importance is often placed on determining minimal hardware requirements 
that can support a number of different application scenarios. This is because there 
are typically tight constraints on the amount of hardware that can be accommodated 
within the embedded platform. Using mappings and schedules that minimize the 

efficiency of the parallel system, thus leading to reduced hardware requirements for a 
given set of application scenarios. 

The work outlined in this paper focuses on using a genetic-algorithm-based (GA- 
based) approach to optimize the scheduhng of messages for a class of parallel radar 
signal processing algorithms known as space-time adaptive processing (STAP). 
STAP is an adaptive signal processing method that simultaneously combines 
the signals received from multiple elements of an antenna array (the spatial 
domain) and from multiple pulses (the temporal domain) of a coherent processing 
interval [6]. The focus of this research assumes that STAP is implemented using an 
element-space post-Doppler partially adaptive algorithm, refer to Appendix A and 
[6, 7] for details. 

STAP involves signal processing methods that operate on data collected from a set 
of spatially distributed sensors over a given time interval. Signal returns are 
composed of range, pulse, and antenna-element digital samples; consequently, a 
three-dimensional (3-D) data cube naturally represents the STAP data. A distributed 
memory multiprocessor machine is assumed here for the parallel STAP implementa- 
tion. The core processing requirement proceeds in three distinct phases of 
computation, one associated with each dimension of the STAP data cube. After 
each phase of processing, the data must be re-distributed across the processors of the 
machine, which represents the communication requirements of this parallel 
application. Thus, there are two primary phases of inter-processor data commu- 
nication required: one between the first and second phases of processing and the 
other between the second and third phases of processing. After all three phases of 
processing are complete for a given STAP data cube, a new data cube is input into 
the parallel machine for processing. 

A proposed GA-based approach is used to solve the message-scheduling problem 
associated with each of the two phases of inter-processor data communication. This 
GA-based optimization is performed off-line, and the results of this optimization are 
static schedules for the compute nodes of the parallel system. These static schedules 
are used within the on-line parallel STAP implementation. The results of the study 
show that significant improvements in communication time performance are possible 
using the proposed approach for scheduling. It is then shown that these 
improvements in communication time translate to reductions in required hardware 
for a class of scenarios. Performance of the mappings and schedules are evaluated 
based on a Mercury RACE" network simulator developed in [7] and described in 
Appendix C. 
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phase of processing. The process sets not only define the allocation of CNs to data 
but also the required data transfers during phases of data redistribution. To 
illustrate, let 7; represent the process set for range processing and T^ define the 
process set for processing in the pulse dimension. The process sets Ti and T2 define 
the required message traffic to form contiguous vectors in the pulse dimension after 
range processing is complete. The row and column dimensions of Ti and T2 affect the 
communication pattern that is induced for the first communication phase. Similarly, 
the row and column dimensions of Tj and T:, affect the volume and pattern of the 
second communication phase. Refer to Appendix B for a more detailed explanation 
of how mapping choices impact communication requirements. 

The possible values for the row and column dimensions of a given process set, 
denoted by (R, C), is defined by the following: 

where p is the number of processors (i.e., the number of CNs). A complete mapping 
is defined by specifying the dimensions of all three process sets; thus, the number of 
complete data cube mappings is given by 

WJ)\U = p}t (2) 

To illustrate, for p = \2 there are six possible process sets: {(1,12),(2,6), 
(3,4), (4,3), (6,2), (12,1)}. Because a process set must be applied to each of the 
three dimensions of the data cube, there are a total of 6'' = 216 
possible mapping alternatives. It is noted that the number of possible schedules 
associated with a single mapping is generally much larger than the number of 
mappings. In Section 3, a GA-approach to optimal scheduling for a given mapping is 
developed. 

Based on the class of mappings defined above, an objective function is developed 
next for defining the merit of individual mappings. The mapping objective function 
quantifies the quality of the mapping associated with a collection of three process 
sets. The message size and the distance each message must travel (i.e.. the number of 
crossbar connections required for transmission) are key parameters of the objective 
function. The process sets T\ and Tj induce message traffic requirements as do the 
process sets Tj and T^. The induced message traffic produced by process sets T\ and 
Ti is quantified using the following expression: 

where S\ represents the set of all messages induced by process sets T\ and Tj, mij 
defines a message from CN / to CN j, l/w,,] is the message size, dij is the distance the 
message traverses from source to destination. By combing the above expression with 
a similar expression for the message traffic between process sets 7^ and Fi, an 
objective measure of overall mapping quality is defined as 
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3. GENETIC-ALGORITHM APPROACH TO MESSAGE SCHEDULING 

A GA is a population-based model that uses selection and recombination 
operators to generate new sample points in a solution space [5]. A GA encodes a 
potential solution to a specific problem on a chromosome-like data structure and 
applies recombination operators to these structures in a manner that preserves 
critical information. Reproduction opportunities are applied in such a way that 
those chromosomes representing a better solution to the target problem are given 
more chances to reproduce than chromosomes with poorer solutions. GAs are a 
promising heuristic approach to locating near-optimal solutions in large search 
spaces [5]. For a complete discussion of GAs, the reader is referred to [2, 5, 8]. 

Typically, a GA is composed of two main components, which are problem 
dependent: the encoding problem and the evaluation function. The encoding problem 
involves generating an encoding scheme to represent the possible solutions to the 
optimization problem. In this research, a candidate solution (i.e., a chromosome) is 
encoded to represent valid message schedules for all of the CNs. The evaluation 
function measures the quality of a particular solution. Each chromosome is 
associated with a fitness value, which in this case is the simulated completion time 
of the schedule represented by the given chromosome. For this research, smaller 
completion times indicate better fitness. The network simulator described in 
Appendix C is used to determine the communication time of the schedule encoded 
by each chromosome. 

Chromosomes evolve through successive iterations, called generations. A new 
generation is created when new chromosomes, called offspring, are formed by (a) 
merging two chromosomes from the current population together using a crossover 
operator or (b) modifying a chromosome using a mutation operator. Crossover, the 
main genetic operator, generates valid offspring by combining features of two parent 
chromosomes. Chromosomes are combined together at a defined crossover rate, 
which is defined as the ratio of the number of offspring produced in each generation 
to the population size. Mutation, a background operator, produces spontaneous 
random changes in various chromosomes. Mutation serves the critical role of either 
replacing the chromosomes lost from the population during the selection process or 
introducing new chromosomes that were not present in the initial population. The 
mutation rate controls the rate at which new chromosomes are introduced into the 
population. In this paper, results are based on the implementation of a position- 
based crossover operator and an insertion mutation operator, refer to [2] for details. 

Selection is the process of ordering (i.e., ranking) chromosomes in the population 
by their fitness values from the best to worst. There are two fundamental paradigms 
for implementing the selection process: (1) value-based roulette wheel selection 
scheme and (2) rank-based roulette wheel selection scheme. In a value-based scheme, 
the probability of a chromosome being selected for reproduction is proportional to 
its fitness value. Each chromosome is allocated a sector on a roulette wheel 
proportional to its fitness value. To better illustrate the value-based approach to 
selection, let P denote the population size and A, denote the angle allocated to the /th 
chromosome. In addition, let /; represent the fitness of the ;th chromosome, and let 
the average fitness of the population be /avg. In this selection scheme, the /th 
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chromosome is allocated a sector of the roulette wheel with area proportional to 
/ivg// [5]. This proportionality assumes the best chromosome has the smaller fitness 
value; therefore, it is allocated a larger slice of the roulette wheel. 

In a value-based scheme, chromosomes with the same fitness values have the same 
probabihty of being selected. In contrast, chromosomes in a rank-based scheme that 
have the same fitness value are arbitrarily ranked among themselves. The 0th ranked 
chromosome is the fittest and has the sector with the largest angle A^; the (P - l)th 
ranked chromosome is the least fit and has the smallest angle /l,,_i [5]. The ratio 
between two adjacent chromosomes is a constant R = Ai/Ai+\. If the 360' of the 
roulette wheel are normalized to one, then 

A - RP '  ' x-^-*^-^ (5) 

where ^> 1, 0<(<P, and 0<^,<1 [5]. 
The selection step involves the generation of P uniformly distributed random 

numbers ranging from zero to one. Each number maps to a location on the roulette 
wheel, thereby selecting the chromosome allocating that sector of the wheel. Because 
better solutions occupy larger portions of the wheel than poorer solutions, the better 
candidates have a higher probability of selection. This selection process produces P 
candidates for recombination and mutation operations, where multiple copies of the 
same candidate are permissible. For this research, the size of the next generation is 
always kept a constant P, and a rank-based selection scheme is used. Advantages of 
rank-based fitness assignment is, it provides uniform scaling across chromosomes in 
the population and is less sensitive to probability-based selections, refer to [5] for 
details. 

As successive generations emerge in the GA heuristic, it is important to compare 
the best solution found thus far to the best solution in the current population. The 
best solution is updated whenever the fitness value (i.e., the completion time) of a 
particular candidate is smaller than the current best solution. After evaluating and 
possibly updating the best solution, the stopping criteria are evaluated. The 
algorithm terminates if one of the stopping criteria are true, otherwise the algorithm 
continues by performing the states of selection, crossover, and mutation. 

The optimization of schedules during phases of data redistribution between CNs 
on the parallel system can be viewed as a problem with discrete objects (i.e., the 
source and destination locations of the messages are fundamental to the encoding of 
the chromosomes). Optimization problems involving discrete data sets are called 
combinatorial optimization problems. In traditional genetic-based algorithms, 
chromosomes are represented as binary strings. However, this representation is 
not well suited for all combinatorial problems. The most natural representation, and 
the one implemented in this research, is a permutation representation. In this 
approach, messages are listed in the order in which they appear in each CN queue by 
a decimal number representing the destination node of the message. This 
representation (see Fig. 3) is called path representation. 

The illustrative example in Fig. 3 shows four CNs with associated message queues. 
The boxes represent a message, and the number in the box indicates the destination 
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 Optimal 8 CN 

 Optimal 16 CN 

12     16     20     24     28     32     36 

for the three mapping/scheduling scenarios of Fig. 7. The oj 

16-processor systems are indicated with dashed lines. 

computation and communication, 

(ing; scheduling for 8-processor and 

benchmark provided by Mitre [1]. Scenario 1 communication time corresponds to 
the best time reported by the GA optimization utilizing the best mapping for the 
given number of assigned processors. The communication completion times for a 
baseline scheduling of transfers given a typical mapping is illustrated by scenario 2, 
and communication scenario 3 consists of a typical mapping and a poor schedule. 
The illustration shows a distinctive variation in the communication scenarios' 
completion times. Additionally, note that as the number of processors increases, the 
computation time decreases. 

To better visualize the affect data mapping and scheduling have on hardware 
requirements, the computation time can be added to each of the three communica- 
tion scenarios shown in Fig. 7; the resulting completion times are depicted in Fig. 8. 
The intersection of optimal 8 processor dashed line and scenario 1 line represent the 
optimal mapping and scheduling for an 8 processor system. In this case, the 
completion time is around 140 ms; however, if scenario 3 was used the completion 
time would be closer to 170 ms per data cube. Obviously with the optimal mapping 
and scheduhng (scenario 1), more data cubes per unit time can be processed; thus, in 
a unit of time more data cubes can be processed than with scenario 2 or 3. Note also 
from the figure that if a poor mapping/scheduling strategy (scenario 3) were utilized, 
then 11 or 12 processors would be required in order to match the performance of the 
optimally mapped (scenario 1) 8 processor system. This represents a potential 
reduction in hardware requirements of around 50% by utilizing the overall optimal 
mapping and scheduling scheme. 

An optimal 16 processor system, which includes optimal data mapping and 
scheduling, can achieve the same performance as a 24 processor system with a poor 
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mapping and scheduling. As a result, if a poor mapping and scheduling was selected 
for a 24 processor system, the same performance could be realized with an optimal 
16 processor configuration. The overall SWAP requirements for a 16 processor 
system would be less than a 24 processor system. Therefore, by optimizing the 
mapping of data and the scheduling of messages the SWAP requirements can be 
reduced. 

This example illustrates that by utilizing the optimal mapping and scheduling 
methodologies of Sections 2 and 3, hardware savings of 50% and more can be 
realized when compared to sub-optimal solutions to the mapping and scheduling 
problems. Because of limitations on the size of problems that could be executed/ 
simulated, systems up to a size of only 32 processors were investigated. However, 
from the trends observed in overall completion times, it appears that even more 
significant savings in hardware/power requirements are realizable for STAP 
applications that require substantially larger systems having hundreds or even 
thousands of processors. 

4.3. Summary of Numerical Studies 

The results recorded here for message scheduling demonstrate that off-line GA- 
based message scheduling can significantly improve the communication performance 
in a parallel system. In most cases, a moderate level of crossover (50%) and mutation 
rates (10%) yielded the best schedules. Although not included here, when compared 
to baseline and randomly generated schedules, the GA-based schedules are 
significantly superior—typically reducing communication times by between 20% 
and 50%, see [8] for details. 

Interestingly, it is shown here that the best mapping—defined as a mapping that 
minimizes a mapping objective function—is not always the best choice in terms of 
minimizing overall communication time. In particular, as the number of CNs is 
increased, optimal mappings that require only one phase of communication 
generally report higher overall communication times than those good, but not 
optimal mappings that require two non-trivial phases of communication. 

5. CONCLUSION 

The optimization of mapping and scheduling, either independently or in 
combination, is critical to the performance of the STAP application for embedded 
parallel systems. For such systems, great significance is placed on minimizing overall 
execution time, which includes both computation and communication components. 
Such reductions in execution time also translate into improved hardware efficiency 
and thus reduced hardware requirements, which is often critical. The focus of this 
research is off-line optimization of data mapping and message schedules for a class 
of STAP algorithms to be implemented on a parallel embedded system. 

An objective function is proposed and developed to measure the merit of a class of 
mappings for STAP for implementation on the Mercury multicomputer. The 
objective-function-based ranking provides a measure of the communication costs 
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associated with a given mapping. A combination of the message size and required 
network resources for each message are key attributes used by the objective function. 

A GA-based approach is proposed and developed for solving the message- 
scheduling problem for a given mapping. A GA is a population-based optimization 
model that uses selection and recombination operators to generate new sample 
points in the solution space. Reproduction opportunities are applied in such a way 
that those chromosomes representing a better solution to the targeted problem are 
given more opportunities to reproduce than poorer chromosomes. Each chromo- 
some is associated with a fitness value, which in this case is the communication 
completion time of a schedule. The fitness of a candidate solution is calculated based 
on its simulated performance. The GA-based optimization is performed off-line, and 
the results of this optimization are static schedules for each CN in the parallel 
system. These static schedules can then be used within the online parallel STAP 
implementation. Through extensive numerical studies, it is shown that the off-line 
optimization approaches can yield mappings and schedules that greatly improve the 
on-line performance and reduce the hardware requirements of the parallel embedded 

APPENDIX A: OVERVIEW OF STAP 

STAP algorithms have been developed to extract desired signals from potential 
target returns comprised of Doppler shifts associated with radar platform motion, 
clutter returns, and interference including jamming. In order to solve complex, large- 
scale, and real-time problems such as STAP, parallel processing has emerged as a key 
hardware technology. This appendix provides a brief overview of STAP methods; for 
a thorough theoretical treatment of STAP, the reader is referred to [6]. 

Current and future airborne radars must detect smaller targets in the presence of 
increasing interference such as clutter, jamming, noise, and platform motion. If the 
interference is localized in frequency and comes from a limited number of sources, 
targets can be detected by using adaptive spatial weighting of the data from each 
element of an antenna array [6]. By applying computed weights (determined in real 
time) to the data, the effects of interference can be reduced. 

For an airborne radar platform that is in motion, the Doppler spread of the clutter 
returns is significant and the clutter characteristics are highly variable due to the 
changing ground terrain. In this type of an environment the weights must be adapted 
from the data in both the time and space dimensions. This general type of signal 
processing method, which is referred to as STAP, is an adaptive processing technique 
that simultaneously combines signals received from multiple elements of an antenna 
array (the spatial domain) and from multiple pulses (the temporal domain). The 
paragraphs to follow provide a general description of the computational complexity 
involved in implementing STAP algorithms. For a detailed theoretical foundation 
and analysis of these and other STAP algorithms, the reader is referred to [6]. 

Consider an A' element airborne radar array that transmits a coherent burst of M 
pulses at a constant pulse repetition frequency (PRF) /,. = l/Tj-, where T, is the pulse 
repetition interval (PRI). The time interval over which the echo returns are collected 
is referred to as the coherent processing interval (CPI), and the resultant length of 
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interconnected in a parent-child fashion to form a fat tree topology as shown in 
Fig.Bl. 

The RACE" network is circuit-switched, thus a CN establishes a path through the 
network prior to data transfer. The RACEway network is actually preemptive in 
that a high-priority message can suspend (preempt) other active paths. When 
arbitration for a given crossbar port, or sequence of ports, becomes necessary, the 
arbitration is carried out on the basis of a combination of the user-programmable 
packet priority and a fixed hardware priority at each crossbar based on the entry and 
exit ports at the given crossbar [4]. For this work, the user-programmable packet 
priority is assumed equivalent for all data packets, thus, the hardware priority 
arbitration rules at each crossbar are used to resolve contention. 

If two contending transactions have different priority levels at a given crossbar, 
then the transaction having the highest hardware priority level kills the contending 
lower-priority level transaction. If a transaction requires a port already occupied by 
a lower-priority transaction, then the transmission of the lower-priority message is 
suspended (i.e., preempted) and the released port is then taken by the higher-priority 
transaction. The unsent data associated with the suspended transaction is re- 
packaged as a new message at the originating CN and begins the process of 
establishing a new path through the network. If two or more contending transactions 
have the same priority level, the first one started holds off any other contending 
transactions at the same level until the transmission of its data is completed. 

The functionality of the RACEway" network has been encoded as a network 
simulator for use in this research. The details of the implementation and operation of 
the simulator are not given here, but can be found in [7, 8, 9]. Provided here is an 
overview of experimental studies performed that illustrate the accuracy of the 
simulator when compared with measured communication times taken from an actual 
Mercury multicomputer. 

Two classes of communication patterns were employed to evaluate the accuracy of 
the simulator: simple test patterns and complex test patterns. Simple test patterns 
included the following three test categories: (I) single-source message tests; (II) two- 
source message tests (non-contending and contending paths); and (III) 3..A^-source 
message tests (non-contending and contending paths). Complex communication 
patterns included the following categories: (IV) all-to-all personalized test and (V) 
randomized message queue communication test. 

For the all-to-all personalized test, the outgoing message queues on each CN 
contained one message to each of the other CNs in the network. For the randomized 
message queue communication test (which closely resembles the communication 
pattern required by STAP) a random number of messages are sent from each of the 
CNs to randomly selected destinations. The outgoing message queues at each CN 
were randomly scheduled (i.e., ordered). For all test cases, identical communication 
patterns were executed on the actual Mercury computer and the network simulator. 

A small subset of the tests performed are presented here. For each test, 50 
independent trials were performed and averages computed for both the actual system 
and the software simulator. (Note that both the actual system and the simulator are 
non-deterministic.) The CNs are numbered left-to-right starting with 1 and 
incrementing by 1 for each successive CN. For instance, the first crossbar located 
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A GA KOR SCHHDULING PARALLEL STAP COMMUNICATIONS 

Comparison of Measured and Simulated Communication Times for Different Communication 
Patterns for Messages of Size 64 kH 

Measured Simulated Percent 
time (ms) time (ms) error (%) 

0.79608 6.29 

.21279 5.88 

Category Description 

II 
(non-contending) 

2^6, 3^7 

II 
(contending) 

2->4, 3^4 

III 
(contending) 

2^3, 3^4 
4^2 

III 
(contending) 

2^6, 3^6 
6-^4 

IV 5^(6,7,8} 
6^{5,7,8} 
7^{5,6,8} 
8 ^{5,6, 7} 

IV All-to-all person; 
communication 
involving 
CNs 2 through 8 

V 2^ {4, 6,8} 3.45185 5.89 

at the bottom left of the fat-tree contains the first four CNs, numbered 1, 2, 3, and 4. 
The next four CNs (i.e., 5, 6, 7, and 8) are connected to the second (lowest-level) 
crossbar from the left, and so forth. Provided in Table Cl are representative results 
of the tests conducted. For all cases shown in the table, all transmitted messages were 
of size 64 kB. This study demonstrates the accuracy of the simulator, in that it 
typically has errors of around 5% or less. For a detailed discussion of these and 
other tests, the reader is referred to [8]. 
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Abstract. The worl^ described here introduces a practical and accurate tool for 
predicting power consumption for FPGA circuits. The utility of the tool is that it 
enables FPGA circuit designers to evaluate the power consumption of their 
designs without resorting to the laborious and expensive enpirical ^proach of 
instrumenting an FPGA board/chip and taldng actual power consumption 
measurements. Prehminary results of the tool presented here indicate that an 
error of less than 5% is usually achieved when conpared with actual physical 
measurements of power consumption. 

Introduction and Background 

Reconfigurable computing devices, such as field programmable gate arrays (FPGAs), 
have become a popular choice for the implementation of custom computing systems. 
For special purpose computing environments, reconfigurable devices can offer a cost- 
effecttve and more flexible alternative than the use of qjplication specific integrated 
circuits (ASICs). They are especially cost-effective compared to ASICs when only a 
few copies of the chip(s) are needed [1]. Another major advantage of FPGAs over 
ASICs is that they can be reconfigured to change their functionality while still 
resident in the system, which allows hardware designs to be changed as easily as 
software and dynamically reconfigured to perform different frmctions at different 
times [6]. 

Often a device's performance (i.e., speed) is a main design consideration; however, 
power consumption is of growing concern as the logic density and speed of ICs 
increase. Some research has been undertaken in the area of power consumption in 
CMOS (complim^titary metal-oxide semiconductor) devices, e.g., see [4, 5]. 
However, most of this past work assumes design and implementation based on the use 
of standard (basic cell) VLSI techniques, which is typically not a valid assumption for 
,'^plication circuits designed for implementation on an FPGA. 
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Overview of the Tool 

A probabilistic power prediction tool for the Xilinx 4000-series FPGA is overviewed 
in this section. The tool, which is implemented in Java, takes as input two files: (1) a 
configuration file associated with an FPGA design and (2) a^pinfle that characterizes 
the signal activities of the input data pins to the FPGA. The configuration file defines 
how each CLB (configurable logic block) is programmed and defines signal 
connections among the programmed CLBs. The configuration file is an ASCII file 
that is generated using a Xilinx Ml Foundation Series utility called ncdread. The pin 
file is also an ASCII file, but is generated by the user. It contains a listing of pins that 
are associated with the input data for the configured FPGA circuit. For each pin 
number listed, probabilistic parameters are provided which characterize the signal 
activity for that pin. 

Based on the two input files, the tool propagates the probabilistic information 
associated with the pins through a model of the FPGA configuration and calculates 
the activity of every internal signal associated with the configuration [1]. The activity 
of an internal signal s, denoted a^, is a value between zero and one and represents the 
signal's relative frequency with respect to the frequency of the system clock,/ Thus, 
the av^age frequency of signal s is given by aj^. 

Cbmputing the activities of the internal signals represents the bulk of computations 
performed by the tool [1]. Given the probabilistic parameters for all input signals of a 
configured CLB, the probabilistic parameters of that CLB's output signals are 
determined using a well-defined mathematical transformation [2]. Thus, the 
probabilistic information for the pin signals is transformed as it passes through the 
configured logic defined by the configuration file. However, the probabilistic 
parameters of some CLB inputs may not be initially known because they are not 
directly connected to pin signals, but instead are connected to the output of another 
CLB for which the output probabilistic parameters have not yet been computed (i.e., 
there is a feedback loop). For this reason, the tool qjplies an iterative approach to 
update the values for unknown signal parameters. The iteration process continues 
until convergence is reached, which means that the determined signal parameters are 
consistent based on the mathematical transformation that relates input and output 
signal parameter values, for every CLB. 

The average power dissipation due to a signal s is modeled by Yi C^(^)V ^ajl where 
d(s) is the Manhattan distance the signal s spans across the array of CLBs, Q(^) is the 
equivalent capacitance seen by the signal s, and V is the voltage level of the FPGA 
device. The overall power consumption of the configured device is the sum of the 
power dissipated by all signals. For an N x N array of CLBs, Manhattan signal 
distances can range from 0 to 2N. Therefore, the values of 2N + 1 equivalent 
capacitance values must be known, in general, to calculate the overall power 
consumption. Letting 5 denote the set of all internal signals for a given configuration, 
the overall power consumption of the FPGA is given by: 
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The values of the activities (i.e., the ai^) are dependent upon the parameter values 
of the pin signals defined in the pin file. Thus, although a given configuration file 
defines the set 5 of internal signals present, the parameter values in the pin file impact 
the activity values of these internal signals. 

i     Calibration of tlie Tool 

Let 5^ denote the set of signals of length /, i.e., 5^ = {s G 51 d(s) = i). So, the set of 

signals 5 can be partitioned into 2/V + 1 subsets based on the length associated with 
each signal. Using this partitioning, Eq. 1 can be expressed as follows: 

P.,=\^^f CoX«.+C,^«,+-. + q„^«, 

To determine the values of the tool's capacitance parameters, actual power 
consumption measurements are taken from an instrumented FPGA using different 
configuration files and pin input parameters. Specifically, 2N + 1 distinct 
measurements are made and equated to the above equation using the activity values 
(i.e., the a/^) computed by the tool. For thej-th design/data set combination, let P, 
denote the measured power and let Aj^k denote the aggregate activity of all signals of 
length k. The resulting set of equations is then solved to determine the 2N + 1 
unknown capacitance parameter values: 

^0.0 ^0.1 

^2N.O      ^2N.l 

^O.IA'    Y  ^0 

^lA'.iA' I '^m I   I ^m 

Solving the above equation for the vector of unknown capacitance values is how the 
tool is calibrated. 

Power Measurements 

For this study, a total of 70 power measurements were made using 5 different 
configuration files and 14 different data sets. Descriptions of these configuration files 
and data sets are given in Tables 1 and 2, respectively. All of the configuration files 
listed in Table 1 each take a total of 32-bits of data as input. The first three 
configurations (fp_mult, fp_add, int_mult) each take two 16-bit operands on each 
clock cycle, and the last two (serial_fir and parallel_fir) each take one 32-bit complex 
operand on each clock cycle. The 32 bits of input data are numbered as 0 through 31 
in Table 2, and two key parameters are used to characterize these bits: an activity 
factor, a and a probability factor, p. The activity factor of an input bit is a value 
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^ *-,- -, ^ —J ^ J                ,,,.,,,,.     ^ ^,- -,-:iu ^^-.«^^* *^ *i ,. 

of time that the bit has a value of one. 
Fie. 1 shows plots of the measured power for all combinations of the confieuration 

files and data sets described in Tables 1 and 2. For all cases, the clock was run at/= 
30 MHz. With the exception of the fp_mult configuration file, the most active data set 
filf^ J^niimbf^r ft\ i^ 3^v>pi3tfvl with thf^ hiohf^^t rtowt^r pon^iimrttion    Al^o   thf^ Ityi^t ■ lie    llllllllL'd     \J 1    l->    H3I>I>WL< IH31CU     WIUI    IJIC    lll}:!lld>l    Ln_rvVd     L< Wlli^lllllLFl IWII.     r\l->^^    IJIC    lt^H3i>l 

active data set file (number 5) is associated with the lowest power consumption across 
all configuration files. There is somewhat of a correlation between the number of 
comr>onents utilized bv each confioiiration and the r>ower consumption' however note 

that even though the serial_fir implementation is slightly larger than parallel_fir, it 
consumes less power. This is likely due to the fact that the parallel fir desieji requires r                                                  J                                                                   r                 —                   c         T 
a hidi fan-out (and thus hidi routine capacitance) to drive the parallel multipliers. 

Table 1. Characteristics of the configuration file£ 

Configuration 
File Name 

Description Con^onent 
Utilization of 

Xilins 4036xla 

fp_mult 
Custom 16-bit floatingpoint multipher with 11- 
bit mantissa, 4-bit exponent, and a sign bit [3]. 

36S 

fp_add Custom 16-bit floating point adder with 11-bit 
mantissa, 4-bit exponent, and a sign bit [3]. 

339 

int_mult 16-bit integer array multipher; produces 32-bit 
product [3]. 

509 

serial_fir 

FIR   filter   inplementation   using   a   serial- 
multiply with  a parallel  reduction add  tree. 
Input data is 32-bit integer conplex. Constant 
coefficient multipliers and adders  from core 
generator. 

1060 

parallel_fir 

HR   filter  implementation   using   a  parahel- 
multiply with a series of delayed adders. Input 
data   is   32-bit   integer   complex.   Constant 
coefficient multiphers  and adders from core 
generator. 

1055 

1 



 

 

 

99

 

TaUe 2. Characteristics of the data sets. 

Data Set 
Number 

Description 

1 Pins 0 Ihrcii^h 15    =>^ = 0.0 and a= 0.0. 
Pins 16 through 31  =>^ = 0.5 and a= 1.0 

2 Pins 0 Ihroi^h 15    =>^ = 0.0 and a= 0.0 
Pins 16 through 31  =>^ = 0.75 and a = 0.4 

3 Pins 0 Ihroi^h 15    =^p = 0.25 and a= 0.45 
Pins 16 through 31  =>^ = 0.0 and a= 0.0 

4 PinsOlhroi^hl5    =>^ = 0. 5 and a= 1.0 
Pins 16 through 31  =>^ = 0.0 and a= 0.0 

5 Pins 0 Ihroi^h 31    =^p = 0.0 and a= 0.0 

6 PinsOlhroi^h31    =>^ = 0.5anda= 1.0 

7 Even numbered pins =>p = 0.0 and a= 0.0 
Odd nunbered pins =>^ = 0.5 and a= 1.0 

8 Even numbered pins =>^ = 0.3 and a= 0.5 
Odd numbered pins   =>p = 0.7 and a= 0.5 

9 Even nunbered pins =>^ = 0.5 and a= 1.0 
Odd numbered pins   =>p = 0.0 and a= 0.0 

10 Even numbered pins =>^ = 0.8 and a= 0.1 
Odd numbered pins   =>p = 0.2 and a = 0.15 

11 For all pins, p and a selected at random 

(different from data s^ 12). 

12 Forallpins,^ and a selected at random 
(different from data set 11). 

B Pins0lhroi^h2,^ = 0.1 and a= 0.1 
Pins 3 Ihroi^h 5,p = 0.2 and a= 0.2, etc., 
p*s continue to increase in steps of 0.1 and a*s 
increase to 0.5 in steps of 0.1 and then 
decrease back down to 0.0. 

14 Pin 0,^ = 0.1 anda=0.2 
Pin 1,^ = 0.2 and a=0.4 
Pin 2,p = 0.3 and a= 0.6, etc., 
p*s continue to increase to 1.0 in steps of 0.1 
(and Ihen decrease) and a*s increase to 1.0 in 
steps of 0.2 (and then decrease). 
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Appendix G: Hongping Li, John K. Antonio, and Sudarshan K. Dhall, “Fast and Precise 
Power Prediction for Combinational Circuits,” Proceedings of the IEEE Symposium on 
VLSI, sponsor: IEEE, Tampa, FL, Feb 2003, pp. 254-259. 
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Abstract 

The power consumed by a combinational circuit is 
dictated by the switching activities of all signab 
associated with the circuit An analytical approach is 
proposed for calculating signal activities for 
combinational circuits. The approach is based on a 
Markov chain signal model, and directly accounts for 
correlations present among the signals. The accuracy 
of the approach is verified by comparing signal activity 
values calculated using the proposed approach with 
corresponding values produced through simulation 
studies. It is also demonstrated that the proposed 
 fch is computationally efficient 

1. Introduction 

Power consumption of integrated circuits (ICs) is of 
growing concern as more electronic devices are being 
deployed in mobile and portable applications, e.g., 
PDAs, mobile telephones, and other battery-powered 
electronic devices. As the functionality of such devices 
increases, so does the complexity and sophistication of 
flie underlying circuits. More complexity and faster 
clock rates generally translate into higher power 
consumption for a given hardware implementation 
technology. Because battery technology has not 
improved at flie same rate as IC technology, there is 
strong motivation to design circuits fliat are as power 
efficient as possible to extend battery life for portable 
devices. 

The focus of fliis paper is the development of an 
analytical tool for predicting power consumption of 
combinational circuits. This tool, which is implemented 
in software, can be utilized during flie design phase to 
give the designer quick and accurate predictions of 
power consumption for a given circuit design. 

Several similar and related approaches to this 
problem have been proposed in flie past, including 
simulation-based [1] and analytical approaches [2, 3, 4]. 

A good survey of past approaches can be found in [5]. 
Generally, simulation-based approaches achieve high 
accuracy but require long execution times; in contrast, 
the analytical qjproaches are faster but are generally less 
accurate. In this paper a new analytical approach is 
proposed fliat achieves fast execution time and accuracy 
that is comparable with simulation-based methods. As 
explained below, flie particular focus is on power 
consumption of circuits implemented in CMOS, but flie 
proposed approach may be applicable for other 
technologies as well. 

Power consumption in a CMOS circuit is primarily 
due to three types of current flow: leakage current, 
switching transient current, and load capacitance 
charging current [9]. The last is the dominant 
component of power consumption in CMOS devices, 
and is strongly dependent on signal switching activity. 

Let S denote flie set of all signals associated with a 
circuit. For each s e S, let C(s) denote the capacitive 
load associated with signal s. Also, let a(s) denote flie 
activity of signal s, which has a value between zero and 
one, and represents flie signal's normalized average 
frequency relative to flie frequency of a system clock,/! 
Thus, fa(s') gives the average frequency of signal s. 
Based on these assumptions and notation, flie average 
power for a CMOS circuit operating at a voltage level of 
Fcanbe expressed as [4, 5]: 

Power,,g=iFV^CW«(^). (1) 
seS 

The problem addressed in fliis paper is to determine 
the activity of all signals of a combinational circuit 
given an appropriate probabilistic model for the primary 
input signals that drive the circuit. The signal model 
proposed in fliis paper is based on a Markov chain. The 
signal activity is easily computed from the parameters 
associated with flie proposed signal model. In flie 
proposed approach, signals wifli known Markov chain 
representations are propagated through flie circuit to 
produce Markov chain representations for the outputs of 
all gates in the circuit. Accuracy of the approach is 
verified by comparing signal activities produced by the 
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proposed method with corresponding activities 
produced flirough simulation studies. When compared 
wifli oflier related approaches, a key aspect of flie 
proposed approach is fliat correlations present among 
flie signals due to re-convergent fan-out are accounted 
for directly. 

2. Previous Related Approaches 

consumption, refer to Eq. 1. An early approach for 
estimating signal activities was developed in [3], in 
which signals of a circuit are modeled to be mutually 
independent strict-sense-stationary (SSS) mean-ergodic 
0-1 processes. Under fliese assumptions, flie activity of a 
signal y ftom a circuit with H-primary inputs can be 
expressed as 

2.1 Signal Probability Calculation 

In [2], probabilistic signal modeling for 
combinational circuits was first introduced. Each signal 
is modeled with a single probabilistic parameter that 
defines the probability of a signal having a logical value 
of one. For signal x, the probability that x has logic 
value 1 is defined by P(x') = P(x = 1). Two algorithms 

for calculating signal probabilities are introduced in [2]. 
These approaches require that a Boolean function 
expression associated wifli each signal be derived in 
terms of flie primary inputs. Because flie number of 
terms in these expressions can grow exponentially with 
ftie number of inputs, flie complexity of fliese 
approaches can be prohibitive for practical circuits. 

A computationally efficient algorithm for calculating 
signal probabilities is introduced in [7], named 
"Algoriflim 1," which operates by propagating 
probability values thiou^ the gates of circuit, fliereby 
drastically reducing flie size of ftie Boolean functions 
fliat must be evaluated. This algorithm is simple and fast 
- it has a linear complexity in flie number of gates - but 
is not accurate for all classes of circuits. 

Anoflier ajgoridim is proposed in [7] called the 
Weighted Averaging Algorithm (WAA), which 
generally achieves better accuracy flian Algorithm 1 and 
has a comparable time complexity. However, flie WAA 
still does not always produce correct values. 

A method for accounting for signal probability 
correlations was developed in [6] named the correlation 
coefficient mefliod (CCM). By using fliis approach, flie 
probability of flie output of a two-input gate can be more 
accurately calculated, given the probabilities of flie two 
inputs and an associated correlation factor associated 
wifli the two signals. In this algorithm, flie correlation 
factor can also be calculated analytically by means of a 
set of basic propagation rules. 

2.2. Signal Activity Calculation 

The above-described approaches of [2], [6], and [7] 
are concerned with determining the probabilities of 
signal values, not the probabilities of signal transitions, 
i.e., activities, which are necessary for estimating power 

where  dyldx^ is the Boolean difference of function y 

with respect to x, and is defined by 

T-= >-L=i ©>-L=o= X-*^b-■-^-^^i-bi^-^^i+b-■-^-^^J 
dx^ ^ (3) 

®y{x^,---,x^-\Ax^^wa„\ 

Intuitively, flie Boolean difference dyldx^ defines 

whether a transition of signal x, will cause a transition in 
output signal y. Specifically, if flie Boolean difference 
function evaluates to one, flien a transition of signal x, 
causes a transition  in y.   So, the probability of the 

( ^\ 
Boolean    difference    function, P —^   ,    defines    flie 

probability fliat a change in j' will occur given fliat there 
is a change in x,. 

The calculation of flie probability of the Boolean 

difference terms, i.e., P    , this calculation can be 

complicated for large and complex circuits. In [3], the 
calculation of fliese terms is accomplished by first 
representing the nodes of the circuit with a binary 
decision diagram (BDD) [3, 5]. In practice, flie BDD 
approach often achieves linear or near linear time 
complexity; however, in the worst case the complexity 
can grow exponentially with the number of gates. 

It is noted in [4] that Eq. 2, i.e., the approach 
described in [3], fails to consider flie effect of 
simultaneous switching of gate inputs. Each Boolean 
difference term associated with Eq. 2 describes an input- 
switching event in which exactly one of the inputs 
makes a transition. Thus, Eq. 2 does not account for 
events involving simultaneous switching of two or more 
of the input signals. The concept of the generalized 
Boolean difference was introduced in [4] to account for 
simultaneous switching, and is denoted as follows: 

= (yIX  =h, ,x   = h, ,...x,   = h. 

®(y|x  =h, ,x   =h  ,...,x   =h  '), 

where ^ is a positive integer,   x^ ,   j = \,%...,k, are 

distinct mutually independent primary inputs of j', and 
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b^ aie  binary values   of 0   or   1.  Note  that   if the 

generalized Boolean difference evaluates to one, flien 

the simultaneous transitions of signals {^Xi,Xj^,...,Xj ) 

firom     (bi,h ,...,h )     to     (h ,bi ,...,h )     or    from 

(bi,h ,...,bi ) to (bi ,bi ,...,bi ) will cause a transition 

atj". 
Eq. 2 is ad^ted in [4] using file generali2ed Boolean 

difference concept to account for simultaneous 
switching, resulting in: 

^-L\pJ ^'y^ 1+fJ ^'y^ 1+.+fJ ^'y^ ] 

1 ,  ...   ,   pc    ^yIM '     are 

conditional probabilities of the generalized Boolean 
differences under the condition fiiat only file indicated 
inputs simultaneously switeh, and file rest do not. 
Details on how to caloilate these conditional 
probabilities can be found in [4]. 

The ^proaches of [3] and [4] can have hi^ 
computational complexities because the number of 
terms in the underlying equations/transformations can 
grow e7q>onentially wifii the number of primary inputs 
to the circuit. Trade-of& between computational 
complexity and accuracy are possible relative to file 
evaluation of Eq. 2 and Eq. 5 (associated with [3] and 
[4], respectively). Instead of deriving a signal's logic 
fimction in terms of file circuit's primary irq>uts, the 
parameters to file immediate irq>uts of the signal's logic 
gate can be used. This type of "gate-by-^ate" tedinique 
will generally introduce error because it does not 
account for correlations present among the internal 
signals that drive file gates within file circuit. 

3. Markov Chain Signal Model 

3.1. Preliminaries 

In fiiis section we introduce a signal model fiiat is 
based on a Maikov chain having fiiree event parameters. 
It is shown that the proposed Markov chain model is 
equival^it to the two-parameter probability/activity 
signal model of [3] and [4]. The advantage of modeling 
signals with Markov chains is that it makes it possible to 
compute correlations between signals related to bofii 
probability and activity. 

The approach derived here can be viewed as a 
generalization of the approach in [6]. Instead of 
tracking a correlation factor foe the single probability 
parameter model, transformations foe correlation factors 
associated with the three parameters of the Markov 
model are derived. This ultimately leads to a fast and 
accurate "gate-by-gate" algorithm for calculating signal 
probabilities and activities. 

As illustrated in Figure 1, the proposed Markov chain 
signal model has three event parameters for signal A. 
The event denoted by A represents the signal being in 
state 1, and^i and^2 represent the events that th^e is a 
transition from state 0 to 1 and from state 1 to 0, 
teq>ectively. Note fiiat file probability of event A is 
denoted by P{A^, and is equival^it to file signal 
probability defined in the previous section. 

Figure 1. Proposed Markov chain signal model. 

For notational convenience and clarity, we will 
denote the value of P{A^ as p^ (for the value of the 
probability of signal A) and file value of the activity 

a^A) as aji (for the value of file activity of signal A) 
throu^out file rest of the p^>er. Using these notations 
and ^plying basic properties of Maikov chains along 
with the definition of signal activity, file following 
expressions can be derived for PiA\ P(A i) and P(Ai): 

P{A) = p„ P(A,) = -^,   P{A^) = -^-     (6) 

Thus, if file values of bofii fiie probability and activity 

parameters of a signal are known (i.e., p^ and o^ fii^i 
the probabilities of the fiiree ev^its associated with the 
proposed Markov model for the signal are completely 
detamined. Likewise, knowing the probability values of 
the three param^ers of the Markov model fiilly 
detamines the probability and activity parameters of the 
signal. 

In ord» to define correlations between two signals 
modeled with Markov chains, some basic definitions are 
needed. Let A and B denote two events and let P(AB) 
denote file probability of bofii ^ and £ occurring. From 
basic probability theory [8], P(AB) = P{A/E)P{E), where 
P(A/B) represents file probability of ^ given B. Also, the 
correlation coefficient of two events A and B is defined 
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where a^g  is the covariance and <^^ and <Jg are the 
positive si.iLiire toots of the variances of^ and B. It can 
be shown that 

P,:AB)-P,:A)P,:B) 
PAH — ~ I , •= ■ (*) 

^P(A)a-P(A))^PiB)<\-PiB)) 

In order to simplify later derivations, it is convenient to 
define the correlation factor Cjts of two events^ and B 
as 

P(AS)       PiAlB)    P(BIA) 

"    P{.A)P{.B)      P{,A)        P(B) 

By applying Eq. 8 to Eq. 9, the following relation^ip 
can be derived: 

(c,,-i).(io) 
P(A)(\-P(Ay)JP(B)0-P(B)) 

Thus, Cjis is related to pjis through scaling and shifting. 
The value of p^e-, by definition [8], is a teal numbet in 
the intetral [-1, 1]; thetefote, accotding to Rq. 10, C^B 

takes on teal non-negative values. .A.Iso, p^g = 0 
cotresponds to C^£ =1, and indicates that the events^ 
and B are mutually independent. Siniilatly, pj,s < 0 (i.e., 
A and B are negatively correlated) cottesponds to 0 < 
CxB '^ li and pxs > 0 (i.e., A and fi ate positively 
cottelated) cottesponds to C>£> 1. 

3.2. Markov Chain Model for Basic Logic Gales 

The focLis in this subsection is on detiving the 
NLitkov cliain model fot the oiitpiit of a basic logic gate 
in which the NLitkov cliain models of the input signals 
ate known. The simple case of a NOT gate is consideted 
tltst followed by the analysis of two-input basic logic 
gates. 

Fot a NOT gate with input A, the Boolean output 

ftmction is given by Y = A . Ftom Figute I, it is cleat 
that the Markov model for yis given by 

P(y) = l-i>(^, P{Y,) = P{A{),PiY^) = PiA{).  (11) 

Consider now the case of a two-input basic logic 
gate. Assuming the Markov chain models of inputs A 
and B are known, the objective is to detive the NLitkov 
chain model fot ou^ut signal Y. A ke\' to detiving the 
NLitkov cliain model for signal yis to teptesent the state 
ttansition diagtam associated with the gate's two inputs, 
as shown in Figute 2. The foiu states in the figute 
cottespond to the foiu input combinations fot the two 

inputs. Tlie first digit of each state Libel cottesponds to 
the value of^, and flie second to the value of S, e.g., the 
state Libeled "01" cottesponds to A = 0 and S = 1. 
.A.Itliougli not Libeled on the figiue, the ditected edges 
teptesent ttansition events. To illusttate the notation to 
label ttansition events, "00-^10" will be used lo 
teptesent the event tliat input signals transitions from 0 
to 1 and signal fi stays in state 0. 

Figure 2. State transition diagram for a two- 
input gate. 

The known patametets of ihe Madcov chain models 
for signals A and fi are given by P(A), P(d{), PiAz), 
P(B), P{B['\, and ^(fii). Also assumed to be known are 
the cottelation factots fot paits of events associated with 
the NLitkov chain models for ihe inpuls. From Eq. 9 
note tliat P{AB) = P(A'^(_B)C^s, where C^s is the 
correlation factor associated with events A and B. 
Similarly,   the   correlation   factor   C^g    enables   the 

calculation of P(A}B2) using the fact that 
P(.4ifi2) = i>(^,)i>(B2)C^j^ .   Recall from Eq. 10 that 

independent events correspond to a correlation factor of 
unity. Given the Markov chain models fot signals A and 
fi (^and the cottesponding cottelation factots) it is 
possible to detive the ptobability associated with every 
event sliowti in the state ttansition diagtam of Figure 2. 
.A^ complete tabulation of these expressions can be found 
in [11]. 

Deriving a Markov chain model fot the output (Y) of 
a two-iiq>ut gate depends on the patticuLit function of 
the gate. To illustrate, considet the specific example of 
an AND gate, i.e., Y=AB. Fot an AND gate, the output 
takes on logic value 1 if and only if both inputs are 1. 
Thus, 

P(X) = P(il') = p^PsC^s. (12) 

The event ^i is associated with three events firom Figure 
2, namely: 00^11, 01^11, and 10^11. Thus, equality 
can be established as follows: 

P{Y)P{Y^) = i>(00)i>(00 -* 1 l)-i-i'(01)P(00 ^ 11) 

-i-i>(01)i>(00^11). 
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Solving Eq. 13 for P{Y\) and using Eqs. 6 results inftie 

following expression: 

- j[^AC^£,^hCA,£, -^C^,^y^a,l{\-p^p,C^,) 

The parameters X, X^, and X^ are simply functions of 
probabilities and correlations factors and are used for 
notational convenience; expressions for ftiese 
parameters can be found in [11]. Derivation for P{Y-^ 
follows in a similar fashion and can be expressed as 

"-^i '^■•} '^■i     ^7.   r. 

Ip^        Ip;       Ipy   Ipi      "=-= 
Derivations of P(Y), P(Y{), and PiY^) for two-input OR 
and XOR gates are included in [11], Ivfethods for 
calculating/propagating correlation factors ftirou^ basic 
elements of a circuit are also included in [11]. 

Step 4    Partition the circuit into levels. 
As shown in Figure 3(e), leveb are defined at 
the input and output of each basic gate. Note 
that Aere is at most one gate between any two 
consecutive leveb. 

Step 5: Successively apply propagation rules at each 
level. 
Apply the propagation rules from [11] for 
calculating the parameters of the Markov 
model for the basic gate outputs and Ae 
associated correlation factors. 

4. Markov Chain Propagation Algorithm 

This section describes a proposed Markov Chain 
Propagation (MCP) algoriftim for determining the 
Markov chain models for all signals of a given 
combinational circuit. The Markov chain signal model 
of Section 3 is employed, and it is assumed that ftie 
parameters of the model are known for the circuit's 
primary inputs. The overall approach is to 
propagate signal information associated with the 
Markov chain model throu^ ftie circuit in a "gate-by- 
gate" fashion. Recall that once the Markov chain 
model is determined for all signals, the signal 
activities and circuit power estimate are determined 
using Eq. 6 and Eq. 1, respectively. It is assumed that 
ftie given circuit is specified at ftie level of basic logic 
gates. 

MCP Algorithm 
Step 1:  Represent the given combinational circuit as 

a directed acyclic graph (DAG). 
Vertices of the DAG correspond to basic gates 
and edges represent signab. Two extra vertices 
(a source and a sink) are included in Ae DAG 
to accommodate the primary inputs and 
ou^ts of Ae circuit An example of how to 
represent a circuit with the DAG model is 
illustrated by Figures 3(a) and 3(b). 

Step 2:  Perform a topological sort [10] on the DAG 
to obtain an ordering of the gates. 
See Figure 3(c). 

Step 3:  Transform to two-input basic logic gates. 
As shown in Figure 3(d), replace all basic 
gates having more Aan two inputs with an 
equival&tt sequence of two-input basic gates. Figure 3. Illustration of the MCP Algorithm. 
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For a circuit with M signals and N gates, the time 
complexity of the MCP Algorithm can be shown to be 
®(M + IT). Due to space limitations, a detailed 

derivation of the time complexity of the MCP Algorithm 
is not includedhere, butcanbefoundin[ll]. 

5. Experimental Results 

The MCP Algorithm has been implemented and 
evaluated using several test circuits. To verify the 
accuracy of the results produced by the MCP algorithm, 

PSpice circuit simulations were performed on the same 
test circuits. In the simulation studies, time-series 
realizations from the assumed Markov chain model for 
each primary input were used to drive the circuit 
simulation. Estimates of signal probabilities were 
derived ftom the simulations by counting flie fraction of 
time each signal took on a value of unity. Estimates of 
signal activities were derived from flie simulations by 
counting signal transitions. 

The MCP Algorithm was also evaluated using a 
circuit named C432 from the ISCAS-85 Benchmark Set. 
For fliis circuit there are a total of 145 distinct signals, 
not including the primary inputs. (Note that there are a 
total of 432 physical signals, which includes fan-out 
signals.) Table 1 shows the distribution of absolute 
differences and relative percentage errors between 
activity values computed by the MCP Algorithm and 
fliose derived flirough simulation. Other circuits were 
also tested and these results also indicate the accuracy of 
flieMCP Algoriflim. 

Table 1. Accuracy for the MCP Algorithm. 

Absolute Drff.   Number of   Relative Enor   Number 
Range Signals Range (%')     of Signals 

(0.01,0.021 35 (1,21 41 
(0.02, 0.031 19 (2,51 31 
(0.03, 0.041 10 (5, 101 25 
(0.04, 0.051 10 (10, 201 3 
(0.05, 0.06] 1 (20, 50] 2 

(0.06, 11 0 >50 0 

6. Summary and Future Work 

The problem of determining the activities of all 
signals of a combinational circuit is addressed in this 
paper. A new signal model is proposed based on a 
Markov chain. Signal activity is easily computed from 
flie parameters associated with the proposed signal 
model. In the proposed approach, signals wifli known 

Markov chain representations are propagated through 
the circuit to produce a Markov chain representation for 
the output of each gate in the circuit. Accuracy of the 
approach is verified by comparing signal activities 
produced by the proposed method with corresponding 
activities produced through simulation studies. These 
initial testing results will be extended in future work by 
testing more and larger circuits. 
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1. Introduction 

Space-lime adaptive processing (STAP) refers to a class of 
signal processing techniques used to process returns of an antenna 
array radar system [4]. STAP algorithms are designed to extract 
desired target signals from returns comprised of Doppler shifts, 
ground clutter, and jamming interference. STAP simultaneously 
and adaptively combines the signals received on multiple 
elements of an antenna array - the spatial domain - and from 
multiple pulse repetition periods - the temporal domain. 

The output of STAP is a weighted sum of multiple returns, 
where the weights for each return in the sum are calculated 
adaptively and in real-time. The most computationally intensive 
portion of most STAP approaches is the calculation of the 
adaptive weight values. Calculation of the weights involves 
solving a set of linear equations based on an estimate of the 
covariance matrix associated with the radar return data. 

Existing approaches for STAP typically rely on the use of 
multiple digital signal processors (DSPs) or general-purpose 
processors (GPPs) to calculate the adaptive weights. These 
approaches are often based on solving multiple sets of linear 
equations and require the calculation of numerous vector inner 
products. This paper proposes the use of EPGAs as vector co- 
processors capable of performing inner product calculation. 

Two different " inner-product co-processor" designs are 
introduced for use with the host DSP or GPP. The first has a 
multiply-and-accumulate structure, and the second uses a 
reduction-style tree structure having two multipliers and an adder. 

2. STAP Weight Calculation 
2.1 Basic Formulation 

The STAP algorithm assumed here is known as X^'-order 
Doppler factored STAP, which is classified as a partially adaptive 
technique. Due to the space limitation, it will not be possible to 
fully explain this algorithm. Instead, the focus here will be on the 
necessaiy notation and core calculations required to determine the 
values of the adaptive weights. For more information on STAP, 
the reader is referred to [1, 4]. 

Determining the values for the ra-vector of adaptive weights, 
denoted by w , involves solving a system of linear equations of 
the form: 

'¥w=s, (1) 

This worl! was supported by DARPA under contract number F30S02-S7- 
2-0237 

where j is a known ra-vector called the steering vector and "i 
is an estimate of the covariance matrix, which is determined 
based on the sampled radar retums.'Pis derived based on 
space-time data matrix^ which is an nxN matrix defined by: 
X = [xj Xj ...x^jfj. Based on this the definition,'P is given 
by: 

'¥ = — XX^ (2) 

2.2   QR-Decomposition and Conjugate Gradient 

The QR-decomposition approach is a direct approach for 
solving a system of linear equations. The QR approach always 
gives an exact solution and the complexity of the algorithm is 
fixed. It involves performing a QR-decomposition on the matrix 
jf, the result of which is an A^xA^ orthogonal matrix Q and an 
HXA^ upper triangular matrix R such that X = QR. The final 
result is obtained by forward and backward substitution. For 
more details the reader is referred to [1]. 

The conjugate gradient approach is an iterative method 
that provides a general means for solving a system of linear 
equations [2]. For the system of equations given inEq. (1), it is 
based on the idea of minimizing the following function: 

f(w) = -w''¥w-sw. (3) 

The function/is minimized when its gradient is zero, i.e., 
Vf = 'i'w—s =0, which corresponds to the solution to the 
original system of linear equations. The very repetitive and 
regular numerical structure of the conjugate gradient update 
equations makes it a prime candidate for implementation on an 
FPGA system. 

Numerical studies were conducted using Matlab 
implementations of the QR-decomposition and CG methods on 
actual STAP data collected by the Multi-Channel Airborne 
Radar Measurement (MCARM) system of Rome Lab [3]. 
Further details of this study can be found in [6]. 

3.   Inner-Product FPGA Co-Processor 

Each of the two methods outlined above requires 
calculating a number of inner products. Given enough 
resources, all the inner products could be done in parallel on 
FPGAs. Because the available system has only two FPGAs [5], 
the computations was divided among the host processor and the 
FPGA board. The two schemes that were implemented are 
outlined below. For both schemes, the data vectors are assumed 
to  be  in block-floating-point format  [91.  Additionally, the 
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multiplier implementation is based on discussion in [7] and the 
adder unit uses 4-bit carry-look-ahead adders [8] in each stage of 
the adder pipe. 

3.1 Multiply-and-Accumulate Implementation 

In the first implementation shown in Figure 1, the FPGA is 
configured to perform the multiply-and-accumulate operations on 
the input vectors. The implementation consists of a multiply unit 
and an accumulator, which is composed of a normalization unit 
and an adder. The normalization unit shifts the binary point of the 

The multiply-and-add unit reads in four operands and 
performs three block-floating-point operations per cycle. Thus, 

HOST 
PROCESSOR 

I Noimalmna unit 

Figure 1: Block diagram implementation of the multiply-and- 
accumulate unit on WildOne FPGA board. 

mantissa and makes a compensating adjustment to the exponent 
prior to the addition. The output of the adder is fed back and 
accumulated with the next product term. 

The single cycle multiply-and-ac cumulate is achieved by 
pipelining each unit of the implementation. This unit reads in two 
operands and performs two operations per cycle. Thus, the unit 
reduces two W-vectors to a constant number of partial sums equal 
to the number of stages in the accumulator pipe. The 
implementation allocates approximately 88% of the configurable 
logic blocks (CLBs) on the Xilinx 4028EX FPGA. The 
implementation can be clocked at 40MHz, thus giving a 
throughput of 80 million block-floating-point operations per 
second. 

3.2 Multiply-and-Add Implementation 

Figure 2 illustrates the second implementation that performs 
an inner product, i.e., a multiply-and-add operation on the two 
input vectors. The design incorporates two 16-bit multiply units 
and an adder. By using this approach, two multiplies can be 
performed in parallel, and afterwards, the adder computes the 
sum of the two products. 

A challenge associated with this implementation is that four 
16-bit input operands, i.e., 64 bits, are required per computation 
cycle. Unfortunately, the data-path to the FPGA board is only 36- 
bits wide. The solution to this problem involves clocking the 
input state machine at twice the frequency of the multiply-and- 
add state machine, and registering the flrst two operands for one 
input state machine clock cycle. 

HOST 
PROCESSOR  1   I .»i^iii|r/ii^uu:i 

' ►              _L 
E 
U 
F 
F 
F 
R 
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Figure 2: Block diagram implementafion of the multiply-and- 
add unit on WildOne FPGA board. 

the two input W-vectors are reduced to an N/2-vector of partial 
sums. This implementation, however, involves an additional 
N/2 addition operations to obtain the inner product result. For 
this implementation, approximately 99% of the available CLBs 
on the Xilinx 4028EX FPGA are required. Ih summary, for a 
fixed clock rate, the second design can provide a higher 
throughput, but requires more computation from the host (to 
perform the flnal summation of the partial sums). 
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associated placing and fetching of data in this memoiy space by the range and azimuth 
PEs, respectively, this type of SAR iii:q)lenienl:ation is generally not thought to be a 
"purely streaming" ^pUcation. However, as is presented in this p^er, these 
conqnitations (both phases) can in fact be structured as a single conqnitational pipeline, 
which can be directly m^ped onto an array of FPGAs. In the proposed approach, no 
intennediate mem^ory buffer is required between the two phases of coiiq)utation. Instead, 
within the structure of the conqnitational pipeline are long segments of delay elements 
that effectively provide the intennediate storage associated with the more traditional 
approach. One potential advantage of the proposed ^proach is that data need not be 
continuously stored and then fetched from a separate memory module by PE (which, 
incidentally, can require significant power consuii5)tion). Instead, the data streams 
continuously through a long coiiq)utational pipeline. Within this pipeline are the t^s of 
the FIR (finite iiiq)ulse response) iiiq)lem^entafions of both the range and azimuth 
processing, interspersed with long segments of delay dem^ents. Although the resulting 
pipeline may be thousands of stages long for practical values of SAR parameters, it is a 
viable approach because end-to-end latencies on the order of 1 millisecond are typically 
acceptable, provided that the required throughput is achieved. 

The second contribution presented in this paper demonstrates how signal activity 
parameters of incoming data can be transformed, before the data are processed by a 
computational pipeline, as a means of reducing overall power consunption. The key to 
understanding this approach is the realization that the activity levels of the input signals 
to the computational pipeUne dictate its level of power consun^tion. The activity of a 
given input signal (i.e., bit) is defined as the fraction of times that the signal transitions 
relative to the system clock. It has been demonstrated that increasing the signal activities 
of input data to a pipelined circuit implemented on an FPGA also increases the power 
consumption of the circuit [1]. In the present paper we illustrate how the activities of the 
input data can be transformed (pre-processed) so that the resulting (transformed) signals 
that are input into &e conQ>utatioiial pipeline have activity values that are weU-matched 
with the pipelined circuit in terms of rrriniinizing consumed power. At the end of the 
computational pipeUne, an inverse transformation is applied to the output values to 
convert them back to their proper (and meaningfiil) representation. This approach is 
based on two fimdamental assunqttions: (1) that the power consun^tion of the 
con^tational pipeline is significantly higher than that of &e con^utational structures 
inplemented to perform the transform and inverse transformation of the data and (2) that 
flie confutations performed within the conmutational pipeUne are linear and time 
invariant 

The final version of tiiis p^er will contain fiirflier details related to the two 
contributions outlined here. Details on the structure and depth of the cori^utational 
pipeline associated with the proposed SAR processing approach will be provided. This 
approach, in terms of estimated power consunption, will be compared with more 
traditional approaches that make use of a multicomputer architecture. Also presented will 
be measurements and estimates of overall power savings possible by using the proposed 
signal activity transformation approach. 
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Power-speed Trade-off in ParaUel Prefix Circuits 

S Vanichayobon, Sudar^han K. Dhall, S. Lakshmivarahan, J. K. Antonio 
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ABSTRACT 

r=,n.^tnn.. ^        ^7   algonthms and voltage scaling. The results show that the use of the hne?r ^,..^..» 
capacitance assumption provides results that are consistent with those obtained using PSpicnh^ltL? TT 
help Identify parallel prefix algorithms with the desirable power consumption with a gieSrouSput " 

Keywords: Parallel prefix circuits, power, power-speed trade-ofi^. 

1. INTRODUCTION 

ine mree most widefy accepted metrics for measuring the quality of a circuit are its area, soe^"        " 
consumption. Optmiizing area and speed have been considered important for Wt^e   but S 
consumption has been gaming prominence only recently [1, 5, 10]   oTiiToit^f rl^on for ^^ 

analysis of power-speed trade-off of prefix circuits considered. Finally, Secdon 6 concludes the resultsTtSe papeT 

2.   PREFIX CIRCUITS - AN OVERVIEW 

A prefix  computation   is   the  process  of taking A^ input  values   x„;^,...,.,_„.,   and  producing  A^ output 
values j„>.2,...,3'^_„y;v such that y,=x,, and ^ 

if.'ff "'Tf <=*?"°!°?'®s ^"d High-Performance Pervasive Computing, Ken Arnold Guanq R Gao 
Sud.pto Ghosh, Editors, Proceedings of SPIE Vol. 4863 (2002) ©2002 SPIE • 02^7/SeKls'.OO 
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^i     ^,-1   ",  -"1 --2--"-^/-i ••^/, fQx2<i<N 

where • is an associative binary operation. A prefix circuit with A^ inputs can also be viewed as a layered directed 
acychc graph with yV input nodes, N output nodes, and at least ;V-1 operation nodes. An operation node is neither an input 
nor an output node. Figure 1 iUustrates the layout and the components of a prefix circuit. The numbers along the left- 
hand side of the layout give the depth (level) of the operation nodes on the right. 
The tradition^ metrics for measuring the performance of a prefix circuit include its size, depth, fan-in, and fan-out The 

T ,°;,n ^'^^ '^''""' '''■^^^^' *' *^ ^°^^ °""'*'^'' "^ operation nodes in the circuit. The depth of a prefix circuit 
depth(N), IS the length of the longest path measured in terms of the number of operations along the path in the circuit 
fi-om its mput nodes to its output nodes. The circuit depth is related to its computation time, to VLSI implementation a 
circuit with smaller depth is generaUy fester than one with greater depth when the fan-out of most nodes in the two 
cu-cuits IS simil^ [14]. A prefix circuit is depth-optimal if the circuit has the smaUest depth among all possible circuits 
An A^-mput prefix cu-cuit is (sizf, depth)-optimal if size + depth =2N-2 [12]. Every prefix circuits have size-depth 
trade-off property [6] - a reduction of the circuit depth is achieved at the cost of an increase in circuit size. The fan-in oi 
a prefix circuit is die maximum fan-in of all nodes in the circuit. T\vc fan-out of a prefix circuit is the maximum fen-out 
of all nodes m the arcuit. In this study, we are interested in prefix circuits with a fan-in of two and we assume that the 
fan-out of the prefix circuit is a function of M In the rest of this section, we give a brief review of the design of some 
prefix circuits. For fiill description of these circuits, refer to [8] and [13]. 

2.1 The Serial Prefix Circuit 
The layout of the serial circuit for N inputs, denoted S{N), is iUustrated in Figure 2. Clearly, both size and depth of this 
cu-cuit IS N-i The senal prefix circuit has the smallest size amongst all prefix circuits. Moreover, the circuit is (size 
depth)-optimal since the sum of its size and depth is 2 A^ - 2. 

2.2 ParaUel Prefix Circuits 
Figures 3 to 9 give illustrations of divide-and-conquer, Ladner-Fischer (LFo), Ladner-Fischer (LF^), Brent-Kung, Snir 
Shih-Lin, and LYD prefix circuits, respectively. Information about their size, depth, and fen-out is given in Table 1 For 
complete details, refer to [8]. All these circuits have a depdi 0(lg AO. Snir circuits are a family of circuits whose depth 
hes m the range [max (Ig M 21g A^ - 2j, N - 1]. The divide-and-conquer circuit and LFo have fan-out 0(AO, whereas all 
the other circuits have a fan-out of 0(lg AO. Ladner and Fischer [6] were the first to discuss the size-depth trade-off in 
prefix circuits. They introduced a femily of circuits, LF,(AO, where k{0<k< \\gN'\) refers to the extra depth (above 

llgA^l) used to bring about the reduction in size. The circuit size and depth depend on the value ofk. Snir [12] showed 
that the sum of depth and size of any prefix circuit with N inputs is bounded below by 2A' - 2. He also introduced an 
algonthm to construct the (size, depth)-optimal prefix circuit for any N with the depth in the range 
\lgN\<depth{N)<m^(\\gN\2\\gN\-3)may not exist. Lakshmivarahan, Yang, and DhaU [7] were the first to 
introduce an algorithm for a (size, depth)-optimal parallel prefix circuit with the depth in the above range. Their design 
provides (size, depth)-optimal circuits with a smaller depth than hitherto known. Furthermore, for ^= 9 to 12 17 to 20 
and 33, the LYD circuits are not only (size, depth)-optimal, but are also depth-optimal. 

2.3 Comparison 

Table I provides a comparison of tiie prefix circuits iUustrated in the previous subsection. While the paraUel prefix 
cu-cuits have desirable depths, which are O(lgA^), they differ widely in the number of operations perfonned Only four 
prefix cu-cuits (i.e., serial, Snir, Shih-Lin, and LYD prefix circuits) are (size, depth)-optimal. The divide-and-conquer 
circuit and the LF^ prefix circuit have the shortest depth and the serial circuit has the smallest size. 

The size-deptii trade-off does apply to any prefix circuit. For example, the serial prefix circuit perfonns fewest 
operations (i.e. smaUest size) compared to the otiiers, but has the longest deptii whUe die divide-and-conquer prefix 
circmt has tiie largest size, but has tiie smaUest deptii. Altiiough the Shih-Un prefix circuit and tiie Snir prefix circuit 
have smular cn-cuit layouts, Shih-Lin's circuit has a smaller deptii tiian Snir's circuit. AU circuits have unbounded fan- 

out except tiie serial circuit tiiat has a constant fan-out of two. The divide-and-conquer prefix circuit and tiie LF^ prefix 

circuit have tiie largest fen-out ((A^/2) + l). Brent-Kung's circuit, Shih-Lin's circuit and Snir's circuit have tiie same 
fen-out (I Ig A? 1+1), which is smaUer tiian tiiat of tiie LYD circuit (2f"lg A^]- 2 ). 
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3. POWER CONSUMPTION IN CIRCUITS 

In the previous section we examined size and depth trade-offe of different prefix circuit designs. We want to examine the 
power consumption characteristics of these circuits. In this section, the sources of power consumption in circuits are 
reviewed and the strategies to estimate the power consimiption of the prefix circuits are presented. 

3.1 Sources of Power Consumptions 
Presendy, CMOS {Complementary-symmetry Metal-Oxide Semiconductor) technology is the most popular technology 
used by the digital IC (Integrated Circuit) industry because of its low power consiunption, its good scalability and its 
speed [5, 10, 14]. In CMOS circuits, power consumption is due to the following three types of current flow [14] (a) static 
power consumption due to leakage currents (b) dynamic power consumption due to short-ckcuit currents, and (c) 
dynamic power consumption due to switching currents from repetitively charging and discharging the parasitic 
capacitances at the transistors' gates (Figure 10). In properly designed CMOS circuits, the major portion of the power 
consumption is from dynamic switching [5, 10, 14]. As a result, in this study, we focus on the dynamic component due 
to the repetitive charging and discharging of the capacitive loads. 
The average power consumption in a CMOS gate or module (e.g., an adder) due to switching can be written as [5,14]: 

^switching - ^eff^Dof ' (3-1) 

where C^ is die effective capacitance switched, Vpo is tiie supply voltage, and / is the clock frequency. C^ has two 

components, the switching activity (signal transition activity) per clock cycle, 77^^, and the load capacitance, C^. Thus, 

for a given circuit running at a given speed (i.e., C^ and / constant), power consumption is a function of the supply 
voltage and switching activity. Therefore, power reduction can be achieved by either operating the circuit at a lower 
voltage or by choosing an architecture that reduces the switching activity of the circuit's signals. 

Effect of Voltage ScaBng 
Due to the quadratic relationship between the supply voltage and the power consumption, lowering supply voltage can 
be an effective way to achieve dramatic power savings. However, as the supply voltage is decreased, the circuit delay 
generally increases relatively independent of the logic function and style(Figure II). Thus, reducing supply voltage 
unfortunately reduces the system throughput. This loss in throughput can be recovered in some cases by applying 
architectural techniques to compensate for the additional delay (e.g., using paralleUsm and pipeline). Reference [5] 
shows that by changing circuit architecture it is possible to gain significant speed improvements with only a slight 
increase in power, hence enabUng some voltage down-scaling while maintaining the throughput 

Effect of Switching Activity 
The power in CMOS circuits is dissipated when tiie signals in the circuit switch (i.e., change values). As a result, the 
amount of switching activity is an indicator of the power consumption. The manner in which the nodes in a circuit are 
interconnected can have a strong influence on the overall switching activity [5]. Some architectures induce extta 
transition activity at the operation nodes called glitching transitions or dynamic hazards, which consiune extra power. 
Glitching is a major problem that increases the effective switching activity, causing a circuit node to undergo several 
rapid transitions in a single clock cycle [5, 10]. 
Figure 12 Dlustrates an example of tiie glitching behavior for a chain of eight NAND gates [10] by using a PSpice® 
simulation [3]. In the simulation, all bits of tiie first input were set to logic 'one' and all bits of second input transition 
from logic 'zero' to 'one'. For an ideal circuit without propagation delays, the resultant outputs V0UT2, 4, 6 and 8 
would stay logic 'one' all the time. However, due to tiie presence of delays, these outputs switch to low temporarily. 
This glitching causes extra power to be consumed. Outputs VOUT1, 3, 5 and 7 do not glitch; tiiey just have some 
propagation delay. It is noted tiiat tiie degree of gUtching depends on the switching pattern of tiie input signals [10]. 
To reduce glitching activity, tiie depth of the signal paths in the circuit should be balanced. Figure 13 gives an 
illustration of two different circuit architectures of a 4-input adder. We assiune that all primary inputs (A, B, C, and D) 

arrive at the time f^ and tiie unplementation is non-pipelined. While tiie adder in Figure 13a makes one transition by 

computing A+B, the second adder also makes one transition based on C and the previous (initial) value of A+B.  After 
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the correct value of A+B has propagated through the first adder at time say tQ+t , the second adder re-evaluates 

(A+B)+C, which is complete at time ?Q + 2t   . Thus, there is a second transition at the second adder. Similarly, there 

will be three transitions at the third adder. With a path-balancing approach of Figure 13(b), while the first and second 
adders make one transition the third adder will make only two transitions to produce the same output as in Figure 13(a). 
In [5], the "total switched capacitance" of the circuit layout in Figures 13(a) and 13(b) has been simulated by using a 
switch-level simulator over random input patterns. The results show that the switched capacitance of the circuit layout in 
Figure 13(a) is larger than that of the layout in Figure 13(b) by a factor of 1.5 for a four input addition, and 2.5 for an 
eight input addition. Hence, increasing circuit depth generally increases the total switched capacitance due to glitching 
and thus increases power consumption [5]. As a consequence, the amount of transition activity (switching activity) for a 

layered and non-pipehned circuit can be a fiinction of depth d and the number of nodes at each level /, W-, as [5] 
d 

HiWi . (3.2) 
1=1 

From this, h follows that in the worst case estimate for the switching activity of such a circuit can grow according to 

0{d ' ) , assuming a constant number of nodes at each level. 

From the previous discussion and the example of Figure 13, we have seen that diflferent circuit architecmres for 
performing the same fiinction can consume different amounts of power. Therefore, the implementation of the various 
prefix circuits in an application will have different power consumption as well. However, in the prefix circuits, we 
cannot say with certainty tiiat the circuit with the longer depth will consume more power tiian one with shorter depth. 
The reason is that both depth and the number of operation nodes among the candidate prefix circuits differ. In prefix 
circuits, when the depth decreases, the number of operation nodes (i.e., size) generally increases and vice versa. This is 
known as the size-depth trade-off [6, 8]. As a result, the switching activity in a prefix circuit not only depends on its 
logic depth but also on the number of operation nodes at each level. The circuit with shorter depth and more nodes might 
have more switching activity than the one with longer depth and fewer nodes. 

3.2 Power Consumption and Fan-out 
Besides the switching activity at an operation node, the node's fan-out also has an efiect on power consumption in a 
circuit design in VLSI [4, 14]: the larger the fan-out, the more power the circuit consumes because there are more 
signals. For example, by using the PSpice over random input patterns, the power consumed by a 2-input XOR gate is 
dependent on the fan-out and the relationship is linear (Figure 14). Hence, fan-out should be taken into accoimt when a 
power consumption estimate is made for the prefix circuit. 

4. POWER MODELING OF PREFIX CIRCUITS 

In this section, we will analyze switching activity and fan-out for each prefix circuit considered. We then use this to 
further estimate and investigate the power-speed trade-off between various types of prefix circuits. 
Having seen the various sources of power consumption in general circuits we now focus on analytical model under 
linear output capacitance assumption for predicting the average power consimiption of a prefix circuit. As mentioned 
previously, die signal switching activity has a major influence on the power consumption. Therefore, the switching 
activity will be used as a basis to determine power consumption of prefix circuits. Further, as mentioned in Section 3.2, 
the power consumption of an operation node is a linear fiinction of fan-out [4]. Therefore, to take into account the effect 
of fan-out on the output load cqiacitance of an operation node, we assimie that die load capacitance of a node with fan- 

out k is equal to CQ+C(k-l), where Q is the load capacitance of a node with fen-out 1, and C is the load 
capacitance for each additional fen-out (Figiu-e 15). 
The effective circuit capacitance of a prefix circuit, cap^{N), is the eflfective load capacitance of all nodes in the 

circuit. As defined here, the effective circuit capacitance depends on input signal patterns and the effects of signal 
gUtching. Thus if a node output experiences two fi-ansitions due to glitching, its effective capacitance is twice that of the 
physical capacitance. Because the degree of glitching depends on input signal patterns, we consider derivations of the 
worst case scenario in which ghtching at the nodes are assumed to be the maxmium possible. By scaling the effective 

circuit capacitance by the circuit clock irequency and V^p, we arrive at our power estimate 
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P = cap^(NWlof. (4.1) 

The capacitance evaluation for various circuits according to our model is made in two steps. As a first step, in Section 
4.1, we assume that load capacitance for each operation node is independent of the fan-out, i.e., the load capacitance is 
constant Cg. In the second step we first compute the residual circuit by deleting one output of each operation node widi 
fen-out > 1. We then compute the load capacitance of the residual circuit assuming that the load capacitance of each 

node is C , independent of the fan-out. This step is repeated k -1 times where k is the fan-out of the given circuit. This 
step is performed in Section 4.2. The effective circuit capacitance is the sum of the values obtauied in step 1 and step 2. 
In the foUowing, we compute the effective circuit capacitance for the divide-and-conquer prefix circuit. The effective 
circuit capacitance for the other prefix circuits can be computed similarly (for details refer to [13]). 

4.1 Step 1 - The Constant Output Capacitance 
hi this step, we assume that the physical output capacitance of each operation node is constant. Let Kcap^ iN)he the 

effective circuit cjq)acitance under the constant output capacitance assumption, depth{N) be the depth of the circuit, w. 

be die number of operation nodes in the circuit at level i, and C Q as the assumed constant load capacitance of one node. 
fdepth(N) \ 

Then fix)m Eq. 3.2, Kcap^(N) =      Y^'^i Q • 
V     '■=!       J 

4.1.1. The Divide-and-Conquer Parallel Prefix Circuit 

Let N = 2". From the layout of the divide-and-conquer prefix circuit, DC(N), in Figure 3, DC(N) is built fi-om 

VwoDC(N 12) circuits and by connecting output \:N 12 fi-om flie first DC(N/2) to each of the output of the 
second DCiN 12) at level depth{N / 2) +1 = \g(N l2) + l = \gN . Thus, 

Kcap,ff{N) = i;2Kcap^^{NI2) + {NI2)\gN)-Ca,      with       Kcap^(2) = hCQ. 

The first part of Kcap^^iN) is the constant output capacitance fi-om the two circuits with (A^/2) inputs while die 

second part is the capacitance fi-om the last level of DC{N). Solving this recurrence, we get 

Kcap^ (N)={N/ 4)((lg ^) ^ + Ig A^jc^ 

Kcap^(N) for die other prefix circuits can be computed sunilarly, altiiough they are generally more chaUenging 

because w,. is not always constant (for details refer to [13]). 

4.2. Step2 - Capacitance of Residual Circuit 

We have assumed that a node with fen-out A: > 1, has a physical output capacitance given as Q + (/t - 1)C'. However, 
the capacitances computed in Section 4.1 for various circuits are based on die assumption that die capacitance of each 

node is CQ irrespective of the fen-out of die node. We still need to account for the component (k - l)C for a node witii 
fan-out k, fc > 1. To get tiiis value, we introduce the concept of die residual circuit. The residual circuit of a prefix circuit 
is die circuit obtained by eliminating one of die fan-outs fi-om each operation node of die given prefiix cu-cuit. For 
example. Figure 16 shows die residual circuit of die divide-and-conquer prefix drcuit. This residual circuit is die result 
of removing one of die fan-outs fi-om each operation node of die circuit in Figure 3. We can compute die capacitance of 

tills residual cu-cuit, Rcap^(N), by assuming constant output capacitance (C) for aU operation nodes. We dien 

construct die residual circuit of die current residual circuit by removing one fan-out fi-om each operation node and 
compute its residual output capacitance. We continue accumulating die capacitances after every reduction until there are 
no more fan-outs to remove. Thus, die effective cu-cuit capacitance of die prefix circuit using die linear output 
capacitance assumption is given by 

cap^ (N) = Kcap,ff {N)C^ + Rcap^ {N)C. 
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4.2.1. The Divide-and-Conquer Parallel Prefix Circuit 
From the layout of the divide-and-conquer prefix circuit in Figure 3, an operation node at level depth(N/2)has the 

maximum fen-out, which is ((A'/2) + l). Alter removing the vertical fen-outs, the residual circuit is shown in Figure 16. 

The operation node of the residual circuit at level depth{N 12) has the maximum fen-out, which is {Nil). 

Let N = 2". The capacitance of the residual circuit is as follows: 

Rcap^(N) = {2Rcap^iN/2) + (N/2)\g(N/2))c',       witii Rcap^(2)=0. 

The first part of Rcap^g (N) is the residual output capacitance of the two circuits with {N12) inputs while the second 

part is the residual output capacitance of the last node in the fist residual circuit. 
Solving the recurrence, we get 

Rcap^(N) = {2Rcap,ff{Nl2) + iNl2)\g{NI2))c' =(7V/4)((lg7V)- -IgAfjc'. 

Thus, the effective circuit capacitance for the divide-and-conquer prefix circuit is as follows. 

ca;.,^(Af)-{;A^/4)((lgA^)-+lgAr)]Co+}(A^/4)((lg7V)--Igivjjc'. 

To summarize, the divide-and-conquer prefix circuit has O(NlgN) size, OQgN) depth, and 0(N(lgN)') effective 
circuit capacitance. Table 2 provides a comparison of the effective circuit capacitance of die prefix circuits described in 

Section 2. The serial prefix circuit has the largest effective circuit capacitance (0(N " )). All parallel prefix circuits have 

O(NlgN) effective circuit capacitance, except the divide-and-conquer prefix circuit and the LFQ prefix circuit whose 

values are 0(N{lgN)-). 

5. SIMULATION STUDIES 

In Section 4, the power modeling for various prefix circuits was proposed. This section deals with the circuit simulations 
(using PSpice) we conducted to investigate the prefix circuits' behavior to match witii the prediction of the effective 
circuit capacitance. The degrees of freedom studied include different prefix circuit designs and voltage scaling. Voltage 
scaling is used because power consumption is a quadratic function of the voltage. 

Theoretical Results 
Figures 18, 20, and 22 give estimated delay, power consumption, and power-delay product obtained fi'om our theoretical 
model in Section 4. Figure 18 is the result obtained by assuming die circuits' delay to be proportional to the circuits' 
depth and applying the normalized delay from Figure 17 in order to take the effect of the supply voltage on the delay. 

The power consumption is estimated using the formula of Eq. 4.1. For this study we used CQ = 0.9 and C = 0.3 [11]. 
For example, at a supply voltage of 2.8V., the normalized power consumed by the divide-and-conquer prefix circuit is: 

Pinormalized) = cap^^ (NW}^ f = (2,496C' \2.%f f/(Cf) = 19,569. 

The estimated power consumption of parallel prefix circuits described in Section 2 is shown in Figure 20. According to 
the figure, the divide-and-conquer prefix circuit consumes the most power. Figure 22 illustrates the power-delay product. 
The Brent-Kung prefix circuit has the highest power-delay product whUe the divide-and-conquer and the LFo prefix 
circuits have ttie power-delay product lower than diat of the Brent-Kung prefix cucuit, the Smr prefix circuit, the Shih- 
Lin prefix circuit and the LYD prefix circuit. 
Table 3 shows the estimated power consumption of the different prefix circuits at fixed and reduced supply voltage when 
N = 64. When the supply voltage is fixed at 2.8V, amongst parallel prefix circuits considered, die divide-and-conquer 
prefix circixit consumes more power than other circuits. To lower power consumption by reducmg the supply voltage, let 
us assume a fixed acceptable delay. Further, assume tiiat delay is proportional to depth and that a delay proportional to a 
depdi of 10 with Vpp = 2.8 volts is acceptable. Thus the voltage of the Brent-Kung and Snir circuits cannot be lowered, 
and the delay of the serial circuits is not acceptable. Thus, the voltages of five prefix circuits (i.e., the divide-and- 
conquer prefix circuit, the LFo prefix circuit, die LFi prefix circuit, Ae Shih-Lin prefix circuit, and die LYD prefix 
circuit) can be dropped from 2.8 V and still achieve die acceptable delay. For example, because the delay for the divide- 
and-conquer prefix circuit is proportional to 6 at 2.8V, the voltage can be dropped fi-om 2.8V to 1.48V. The operating 
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frequency can be decreased by a factor of 0.6. Thus the normalized power consumed by the divide-and-conquer prefix 
circuit is: 

P(normalized) = cap^ {NWjdf = (2A96C'\lASf {0.6 f)/(C'f) = 3,280. 

After scaling the supply voltage, there is a power improvement in the circuits havmg depth shorter than 10. Among these 
circuits, the LFQ prefix circuit has a major reduction in power due to its shortest deptii. 

Simulation Results 
PSpice simulation was carried out on different parallel prefix circuits with 64 inputs using XOR gate as an associative 
binary operation. Figures 19, 21, and 23 give delay, power consumption, and power-delay product obtained through the 
simulation over random inputs. As expected, amongst the parallel prefix circuits considered, tiie divide-and-conquer 
prefix circuit copsumes tiie most power. As the supply voltage is reduced, power consumption is also reduced. Also, 
though the delay of the divide-and-conquer prefix circuit is the least for some values of the voltage supply, it is not so for 
lower voltages. This may be due to its very high fen-out compared to others {(XN) vs 0(lg A^)). From tiie point of view 
of tiie power-delay product metric, tiie LYD prefix circuit is found to be tiie best across the entire voltage scaling. This 
means tiiat tiie circuit provides tiie best trade-off between power and delay. Anotiier result of tiie simulation studies 
shows that tiie power-delay product of the divide-and-conquer circuit is the highest, followed by tiiat of the LFo circuit. 
This is at variance witii our model prediction and may be due to tiie feet tiiat tiiese circuits have a very high fan-out (see 
Table I for fan-out). In our tiieoretical results, we do not take into account tiie effect of fan-out on tiie delay. 
Also according to tiie simulation, with voltage-scaling technique, the LYD prefix circuit has tiie least power 
consumption compared to oflier circuits. For example, let us assume tiie maximum acceptable delay is 6.4 |iis. From 
Figures 19 and 21, to achieve tiiis time-delay, flie supply voltage of the divide-and-conquer, LFQ. LFi, Shih-Lin, and 
LYD prefix circuits can be 1.8 V, 1.78V, 1.78 V, 2V, and 1.8V, respectively. Therefore, tiie powers tiiat the divide-and- 
conquer, LFo, LFi, Shih-Un, and LYD prefix circuits consume are 2.25, 1.94, 1.59, 1.64, and 1.44 W, respectively. This 
shows that power reduction of about 1.6 times can be obtained without speed loss by using the LYD prefix circuit 
compared with using tiie divide-and-conquer prefix cu-cuit by using appropriately chosen supply voltage. 

6. CONCLUSIONS 

The power consumption and tiie power-delay product of seven parallel prefix circuits were compared. We have shown 
tiiat the use of our effective circuit capacitance provides results that are accurate when compared to PSpice simulations. 
We have also shown tiiat paralleUsm at a certain level coupled with the use of low supply voltage can be used to reduce 
die power consumption in tiie circuit witiiout tiiroughput loss. The main discrepancy between tiie model and tiie 
simulation is tiie power-delay product metric. This may be due to the fact tiiat the fen-out of tiie divide-and-conquer and 
tiie LFo prefix circuit is very high as compared to other circuits. In this analysis, we have assumed that the delay is 
uniquely determined by the depth of the circuit. The results of the simulation of the divide-and-conquer drcuit in 
particular indicate that large fan-out in addition to contributing to more power may also indirectly affect the delay. 
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Figure 1: An iUustration of the prefix circuit's layout. Figure 2: An illustration of the serial prefix circuit, S{N). 
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Figure 3: An illustration of the divide-and-conquer prefix Figure 4: An iUustration of the Ladner-Fischer parallel 
'^"''^"''' prefix circuit when ^ = 0, LFd(N), derived from [6]. 
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(a) Chain Model (b) Tree Model 

Figure 13: An illustration of extra transition activity, derived from [5]. 

Figure 12: An illustration of the glitching behavior 
of a chain of eight NAND gates, derived from [10]. 

Fan-out Number 

1 i'igure 14: Effect of fan-out on power consumption 
ofa2-inputXORgate. 
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Figure 16: The residual circuit of the divide-andK;onquer 
jrefix circuit. DC(N), shown in solid lines. 

Figure 18: Estimated delay of parallel prefix circuits when A'=64. 

118 Proc. SPIE Vol. 4863 

Figure 19: Delay of the 64-bit XOR paraUel prefix 
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Table 1: A Comparison of the six prefix circuits illustrated in Section 2, when N=2". 

Prefix Circuit Size Depth Fan-out (size, depth)- 
optimal 

Serial N-\ N-\ 2 Yes 

Divide-and- 
Conquer 

(N/2)]gN IgiV W2)-l-l No 
depth-optimal 

- LFo 4N-F(5 + lgN) + l 
IgA^ + fc {N/2'*') + k 

No 
LF, 
whenO<«:<lg/V-2 

2iV(l + (l/2*))-F(5 + lg^'-^•)-/fc + l 

LFu 
vAent>lgA'-2 

2N-lgN-2 2\gN-2 IgN + l 

Brent-Kung 2N-lgN-2 2\gN-2 IgN + l 
No 

- 

Snir 2N-2-depth maxdgiv, 2IgAf-2) 
<depth<N-\ 

lgAf+1 
Yes 

LYD 2N-2-depth 2lgN-6<depth< aigTV-S 21gA'-2 
Yes - Shih-Lin 2N-2-depth 2lgN-5<depth<2lgN-3 IgA'-l-l 
Yes 
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Table 2: Comparison of effective circuit capacitance of prefix circuits 

Prefk Circuit 

Divide-and-Conquer 

Brent-Kung {l + |;Vlg^-i[2^ + (lgA.)^+lg^]}c„ + {/„:^,g^]_ir3^^(,g^>.,,^|jU 

|j(agAf)=+lgA')jc„ + |^((lgA')=-lgAf)|c<Z.Fj<|l + ^A'lgA'-^[2A' + (lgA')-+lgAf]|(: 

{{^-^^sfj-\h.o^^y.A 

I l + |A',(lgiV,)j-[i[2Ar,+(lgA',)=+(lgA',)]j+   Af,r(lgA',)l-r(lgJV,)]+f'M^l U + 

[{l + f Igf )4(3^. +Ogf )= +lg^]l+ [hN,jN, -i}^i(N; -3N,_^2)\\c- 

il + ljV.lgiV, - ^[2N,+asNy-+lgN,] +riM!l + 2rigiv,T+i[MLl + il + 

•'V3+i)+% + AfJigA',l+Ar3N,+i—^ ic 

Tabk 3: Estimated power consumption based on Eq. 3 fw various pceGx circuits for A'^ = 64, Co= 3C' 
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Architecture for SAR and STAP,” Proceedings of the Fourth Annual High Performance 
Embedded Computing Workshop, sponsors: U.S. Navy and Defense Advanced Research 
Projects Agency (DARPA), MIT Lincoln Laboratory Publications, Group 18, Lexington, 
MA, Sep. 2000, pp. 29-30. 
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data connnmiication (through the PCI bus) between the PCs and the FPGA subsystems. 
The data conmiunication among all FPGA boards is through two types of 36-bit wide 
connectors, one called systolic and one called SIMD. 

The data communication between the front-end FPGA subsystem (F) and the 
DSP/GPP subsystem is a custom interface developed using the systolic connector from 
Ann^oHs and the RIN-T input device from Mercury. Similarly, the data communication 
between the DSP/GPP subsystem and the back-end FPGA subsystem (B) is through a 
custom interface developed using the ROUT-T output device from Mercury and the 
systolic connector from Annapolis. 

Figures 2 and 3 illustrate how the m^or coii:q)utational coii:5)onents of the SAR and 
STAP applications can be m^ped onto the prototype s^tem. A candidate moping is 
defined by assigning the coii:5)utations of each m^or coii:q)onent to one or both of the 
symbols shown in each block (which correspond to one of the FPGA or DSP/GPP 
subsystems). Using SAR to illustrate, one moping would be to perform all of the range 
con:q)ression on the front-end FPGA subsystem (F) and then perform all azimuth 
processing on the DSP/GPP subsystem. Another possible mapping is defined by using the 
FPGA subsystems and the DSP/GPP for both con:q)onents of con:q)utation. It is also 
possible to use only the DSP/GPP subs^tem for both con:q)onents of corrq)utations. 

The SAR studies were designed by ad^ting the RASSP (R^id Prototyping of 
Apphcation Specific Signal Processors) benchmark developed originally by Lincoln 
Laboratory at MIT. The benchmark, which was originally iirq)lemented in serial C code, 
was first modified to execute on the parallel DSP/GPP subsystem. A data-streaming 
corrq)onent was also added so that input data can be sent continuously from the data 
source of the prototype system. Core con:q)utations from the range con:5)ression and 
azimuth processing components were implemented for the FPGA subsystems. 

The STAP studies were designed by adapting the RT_STAP (Real Time STAP) 
benchmark developed originally at MITRE. This benchmark was aheady in^lemented 
for parallel execution on a PowerPC-based Mercury system. This irr^lementation was 
expanded to also enable execution on SHARC compute nodes. The same basic data 
streaming component that was developed for SAR was also adapted to enable the STAP 
input data to be sent continuously from the data source. Finally, core computations from 
the range compression and weight confutation con^onents from the STAP processing 
flow were iiiplemented for the FPGA subsystems. 

The size, weight, and power utilizations of various mappings and problem instances 
are under investigation. Initial indications are that heterogeneous configurations, which 
utilize two or more hardware technologies of the prototype system, are preferred over 
homogeneous configurations. 
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Figure 1. Overview of the architecture of the prototype system. 
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Figure 3. Major computational components of STAP processing flow. 


